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Context and motivation

mHE
&) 17 pARIS
G. Richard * Machine learning: a growing trend towards pure “Data-driven” deep learning approaches
B e * High performances but some main limitations:
musicgareration
* “Knowledge” is learned (only) from data
* Complexity: overparametrized models (>> 100 millions parameters)
* Qverconsumption regime
* Non-interpretable/non-controllable
il Hi-AUDIO
erc
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Context and motivation

Machine learning: a growing trend towards pure “Data-driven” deep learning approaches
High performances but some main limitations:

* “Knowledge” is learned (only) from data

* Complexity: overparametrized models (> 100 millions parameters)
* Qverconsumption regime

* Non-interpretable/non-controllable

The main goal of the project : ||||l I[li-AUDIO

 Main goal : To build controllable and frugal machine listening models based on
L expressive generative modelling

f Approach: to build Hybrid deep learning models, by integrating our prior

L knowledge about the nature of the processed data.

- \\

\\ \\j Hi-Audio, Hybrid and Interpretable Deep neural audio machines, European Research Council “Advanced Grant” (AdG) project - https://hi-
"""" audio.imt.fr/




i Towards Hybrid (or model-based) deep learning

m A ... some prior works.
.e;‘ IP PARIS
G. Richard * Physics-guided neural networks in remote sensing [1], ‘
Hgn
q \_( L i)
Exploiting knowledge g 1 ‘ 8 ‘§ Physics-guided
for model-based deep P = Neural Networks
music generation g 2 (PGNN)
g | 2
2] 8
s || 2
g o
3
Black-box Neural Networks
m -
(g_M The Denersl Lobe Made! o Use of Data High
* Digital communication and Image restoration [2,3] Model Biased Decp tearming
pl“
0110101011..... D ((( ,)) 0110101011....
- &P - A -
Model-Aided Networks DNN-Aided Inference
a) Transmitter  Channel Input Channel output (Section IV) (Section V)
|54 %
'Illl Ii-AUDIO 0110101011... ((( S 0110101011....
D ‘ w A .l E _— Deep B”?;fal Structure- Structure- Neural
- b) B — Bt Unfolding :Iloclknsg Oriented Oriented Augmentation
}m ran ter annal Input out

5 \‘I [1] A. Karpatne & al. "Physics-guided Neural Networks [PGNNJ: An Application in Lake Temperature Modeling,” arXiv, 1710.11431, 2017.
\ﬁ\}-" [2] B. Lecouat & al., “Fully Trainable and Interpretable Non-Local Sparse Models for Image Restoration.,” 2020. (hal-02414291v2).
[3] N. Shlezinger, & al., "Model-Based Deep Learning," in Proceedings of the IEEE, vol. 111, no. 5, pp. 465-499, May 2023,
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Towards Hybrid (or model-based) deep learning

... Some prior works.

* [llustration of model-based versus data-driven inference (from [3])

| 38 De kr

Data-driven (Partial) domain  Model-based machine learning (Partial) domaip
Data knowledge

(Limited) data (Limited)datad, ~ knowledge

'~ Deep neural network "3 :
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Model-based

Domain knowledge

" Model-based algorithm -~
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Inference mapping
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\Q}\\}ﬁ [3] N. Shlezinger, & al., "Model-Based Deep Learning," in Proceedings of the IEEE, vol. 111, no. 5, pp. 465-499, May 2023,
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Towards model-based deep learning approaches

* Coupling model-based and deep learning:

Hgn

»

§ Physics-guided
> b= Neural Networks
23 (PGNN)
g1 3
b b4
@ || 2
o £
2 a.
>

Black-box Neural Networks
ow Use of Data High

e
/

Example with Hybrid deep model for Music signals

Knowledge Sources

Signal Models

F1
F2

F3

Physical Models

Musical Models
% Beethoven:

f—-"."‘“fﬁ‘.{
f'« N

Perceptual Models

@

Ve
J‘Sﬁ@/f/ ‘
|

I

V

Dataset Curation A
& Augmentation

/\
||

il U
( Input Hybrid Deep ( Loss
Representations Learning Models Functions

G. Richard, V. Lostanlen, Y.-H. Yang, M. Miiller, “Hybrid Deep Learning for Music Information Research”, IEEE Signal Processing Magazine - Special Issue
on Model-based and Data-Driven Audio Signal Processing, 2025
Hi-Audlio, Hybrid and Interpretable Deep neural audio machines, European Research Council “Advanced Grant” [AdG) project - https://hi-audio.imt.fr/
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b 4| ... some prior works in audio
@ IP PARIS
G. Richard
» Use of a model-based feature representation
Exploiting knowledge
g o * Non-Negative Matrix Factorization (NMF) models with CNNs for audio scene classification [1, 2]
» Exploit the concept of deep unrolling
* Deep NMF : Converting one iteration of NMF (iterative algorithm) into one layer of a DNN [3]
» Use DNN as noise estimator
* Deep Griffin-Lim: Each iteration of an iterative phase retrieval algorithm is « denoised » by DNN
[4]
|l Hi-AUDIO > ... Many other examples

[1] V. Bisot & al., "Feature Learning with Matrix Factorization Applied to Acoustic Scene Classification”, ACM/IEEE Trans. on ASLP, vol. 25, no. 6, 2017

[2] V. Bisot & al., Leveraging deep neural networks with nonnegative representations for improved environmental sound classification IEEE International Workshop on
Machine Learning for Signal Processing MLSP, Sep 2017, Tokyo,

TN [31J. L. Roux & al,, “Deep NMF for speech separation,,” in IEEE Int. Conf. on Acous., Speech and Signal Proc. (ICASSP), 2015

8 < ‘*a\ :\ [4] Y. Masuyama, K. Yatabe, Y. Koizumi, Y. Oikawa and N. Harada, "Deep Griffin-Lim Iteration: Trainable Iterative Phase Reconstruction Using Neural Network," in /EEE
S Journal of Selected Topics in Signal Processing, vol. 15, no. 1, pp. 37-50, Jan. 2021,
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Towards model-based deep learning

b 4| ... some prior works in audio
'Qg;w PARIS
G. Richard * Coupling signal processing modules with deep learning for audio synthesis
* The example of DDSP (Engel & al.)
Exploiting knowledge
for model-based deep
music generation

user input neural network  digital signal processors signal

| Harmonic
W O OB Audio

r.|- —

Audio boi 2 +—»|Decoder _’ Audio
‘ : Filtered /
Nonse !
» | oudness —»

s X. Wang & al. “Neural Source-Filter Waveform Models for Statistical Parametric Speech Synthesis,” in IEEE/ACM Trans. on ASLP Proc., vol. 28, 2020.
\?«;)‘i J. Engel & al., “DDSP: Differentiable Digital Signal Processing,” in Int. Conf. on Learning Representations (ICLR), 2020.

| Hi-AUDIO

Multi-Scale Spectrogram Loss
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Towards model-based deep learning

... by integrating our prior knowledge about the nature of the processed data.

* For example in music source separation

Polyphonic music

-

music database

Main limitations:

Difficulty to obtain « aligned » data
Knowledge learned (only) from data
Complexity: overparametrized models
Overconsumption regime
Non-interpretable/non-controllable
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an efficient speech production model

G. Richard
Exploiting knowledge | P S PR |
fa del-based d - R - _
/Zzgf ggneiasz‘?on 7 I Mﬂcav@ N : Fl Iter !
o ~ : = I
T, . Source signal Resonator S H
m— - —> —>
N ~ (Vocal folds) (Vocal/nasal tracts) peech
vocaltolds | i
] I |
! |
X ()] 4 H(f)l YNl
3 3 3
g S 2
3 3 3
§ >< S Y S PR
|t Hi-AUDIO ‘ ‘H
Frequency Frequency Frequency
erc
11 N

Q\«-;}‘:ﬁi Fant, G. Acoustic theory of speech production, 1960, The Hague, The Netherlands, Mouton.
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b 4| ... by integrating our prior knowledge about the nature of the processed data.
ﬁ IP PARIS
G. Richard _ )
Knowledge about « how the sound is produced « (e.g. sound production models)
Exploiting knowledge ) ) . .
el Singing voice as a source / filter model
music generation B
v cony * source = vibration of vocal folds
o8 * Filter = resonances of vocal/nasal cavities
* Differentiable .
Generative *
© audio models :
' ' .“-~._ . ) /\ s .
Polyphonic music ‘T" X Y Synthesized music
bl @ W
| Hi-AUDIO : JA

——> Magnitude spectrogram loss
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Towards model-based deep learning

... by integrating our prior knowledge about the nature of the processed data.

Knowledge about « how the sound is produced « (e.g. sound production models)

Y

Synthesized music

. o

<

b 4|
2, 1P PARIS
G. Richard
Exploiting knowledge
for model-based deep
music generation e
aral cavity L]
e &
vocal folds [ ]
* Differentiable .
- Generative
© audio models -
. T R
Polyphonic music ‘_* . :
1|t Hi-AUDIO = &
erc
""" — —>» Magnitude spectrogram loss
13

Singing voice as a source / filter model
source = vibration of vocal folds
Filter = resonances of vocal/nasal cavities

Anew paradigm \

* Model is at the « core » of neural architecture

* Source separation by synthesis (no
interference from other sources)

° Learning only from the polyphonic recording
(no need of the true individual tracks)

Novel sound transformation capabilities:

* Timbre/melody of the voice,

* Lyrics, translation
\ Re-harmonization
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Towards model-based deep learning

. by integrating our prior knowledge about the nature of the processed data.

* An example for unsupervised singing voice separation

@

Fundamental Frequency (FO) |

—>

Multi-FO FO-to-Source | __ [

Estimation 7 Assignment LS

I =

Input DNN —
Mixture

O —>

~8 38
O *O =
>

Other Synthesis Parameters \

A 4

Differentiable Generative
Source-Filter Models

Source 1
Source 2
[Gie]
Source 3
Source 4 ‘
For~ »—
ifesa

Multi-Scale Spectrogram Loss

Synthesized
Mixture

o

Highlights

~

Unsupervised :

* Learning only from the
polyphonic recording (no need
of the true individual tracks)

Homogeneous sources :

* All sources have similar
acoustic properties

J

K Schulze-Forster, G. Richard, L. Kelley, C. Doire, R Badeau Unsupervised Music Source Separation Using Differentiable Parametric Source Models, IEEE Trans. On AASP, 2023
G. Richard, V. Lostanlen, Y.-H. Yang, M. Miiller, “Model-based Deep Learning for Music Information Research”, IEEE Signal Processing Magazine - Special Issue on Model-based
and Data-Driven Audio Signal Processing, 2025 (preprint accessible at: https://arxiv.org/abs/2406.11540)
Multi-FO estimation from ‘H. Cuesta, B. McFee, and E. Gomez. Multiple f0 estimation in vocal ensembles using convolutional neural networks. ISMIR, 2020.



https://arxiv.org/abs/2406.11540

Parametric source models

i g!m‘ Diﬂerem:_ab‘e + fundamental frequoncy (FO)
nerative 8 s para
W) 1P PARIS Iﬂ{ Multiple FO | | FO-to-source | source e m—
DO estimation | | assignment "“, J—S1r
G. Richard o ) ) .  —
Singing voice as a source / filter model : oy /ﬁ-;,{_ Svgﬂmﬂ’ J
Exploiting knowledge Mbuumj»** Mixture  — DNN ‘ _ SourceJ T
for model-based deep
music generation )
| Spectral |
. . loss
* source = vibration of vocal folds
* Filter = resonances of vocal/nasal cavities
excitation source filter voice signal

|l kli-AUDIO
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Parametric source models

parameterizes the harmonic signal

r(t) v harmonics R
filter [h() a( » (t)

fo(t)
fundamental frequency
i I

excitation source filter voice signal

white noise

w(t)

ay(n)
filter coefficients

T

Line spectral frequencies Wk

O<wp <wpgr <



Fundamental Frequency (F0) Differentiable Generative
Source—Filter Models

v

iy Synthesis or filtering

FO-to-Source
Assignment

vl

T ‘ l Source 1
@ IRPARIS Input T DNN = - SO Synthesized
Mixture - » Seice3 1BLeNe + _J Mixture
G. Richard —| e 22| || Sources )~
e @ —
5% o L, L e
Other Synthesis Parameters '
Exploiting knowledge ,
for model-based deep | Multi-Scale Spectrogram Loss ‘<—
music generation
Synthesis Filtering
- Differentiable
- generative
source models
| Source 1 :
L C . Source
L Y Mixture | Soft mask |= :
: Source 2 : estimate
\ J +
il Hi-AUDIO g : 3 i
| Source J ;
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Some results

40
* Unsupervised (US) = supervised (SV)
20 o A . | ; 2 /4 S ; . I s
s 4 1N . \ y f '-_\ il \ i “/ -
% L'..‘ H/J L\\ /l \ ‘./." ~\H £ \\\H /"‘ l‘-,\H‘/, \ H/y‘ |\ H '}
c 0 7 \| ’v' "‘, ‘/ ‘.‘\ "‘- /; "‘ \ I"x
- o 3 r l‘ 4/ { J \ YY " \ / f
o ) W i i \ ,l
D !
U"l 4
N —20 -
'40'. median:5.82 |5.67 7.60 7.56 7.91 7.42 |5.71 2.72
/mean: |5.00 4.69 691 6.65 7.15 6.49 4.44 1.50

NMF1 NMF2 US-F US-S SV-F SV-S Unet-F Unet-S

(b) J = 4 sources

NMF1]S. Ewert and M. M uller, “Using score-informed constraints for NMF- based source separation,” in Proc. IEEE Int. Conf. on Acoustics,

Speech and Signal Processing. IEEE, 2012, pp. 129-132.
NMF2:1J.-L. Durrieu, B. David, and G. Richard, “A musically motivated mid- evel representation for pitch estimation and musical audio source

Separation,” IEEE J. Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1180-1191, 2011.
lUNET: D. Petermann, P. Chandna, H. Cuesta, J. Bonada, and E. Gomez, “Deep learning based source separation applied to choir ensembles,”
[

n pProc. Int. Soc. Music Inf. Retrieval Conf., 2020, pp. 733-739.




Some results

TELEEOM
ATlS

m A

2 1P PARIS
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AR * Unsupervised (US) = supervised (SV)
Exploiting knowledge 20. - = 1 - L : y i chs
ormoeivasesceer @ Almost no drop of performances when I RN N H H ‘8) H N4 N,
using only 3% of the training data S ) H *" Eﬁ H \H/
(US-F vs. US-S and SV-F vs. SV-5) € ] i | | S -
B -204
_40-.median: 5.82 5.67 7.60 7.56 7.91 7.42 5.71 2.72
/mean: |5.00 4.69 691 6.65 7.15 6.49 4.44 1.50

NMF1 NMF2 US-F US-S SV-F SV-S Unet-F Unet-S

(b) J = 4 sources

| Hi-AUDIO

s Sl NMF1]S. Ewert and M. M uller, “Using score-informed constraints for NMF- based source separation,” in Proc. IEEE Int. Conf. on Acoustics,
\?“:Si Speech and Signal Processing. IEEE, 2012, pp. 129-132.
NMF2:1J.-L. Durrieu, B. David, and G. Richard, “A musically motivated mid- evel representation for pitch estimation and musical audio source
Separation,” IEEE J. Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1180-1191, 2011.
lUNET:
I

D. Petermann, P. Chandna, H. Cuesta, J. Bonada, and E. Gomez, “Deep learning based source separation applied to choir ensembles,”
19 n pProc. Int. Soc. Music Inf. Retrieval Conf., 2020, pp. 733-739.
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40

G. Richard * Unsupervised (US) = supervised (SV)

Exploiting knowledge 20 ) A 5 Lf. Y, N\ A A i B

ormoeivasesceer @ Almost no drop of performances when
using only 3% of the training data
(US-F vs. US-S and SV-F vs. SV-S)

T
S
on
{1}
T
S

SI-SDR in dB

|
N
(=]
o L _a'’s s

* ..much larger drop of performances of
the SuperVISed basellne mOdeI (Unet) _40-.median:5.82 5.67 7.60 7.56 7.91 7.42 5.71 2.72

/mean: |5.00 4.69 691 6.65 7.15 6.49 4.44 1.50

NMF1 NMF2 US-F US-S SV-F SV-S Unet-F Unet-S

(b) J = 4 sources

| Hi-AUDIO

s Sl NMF1]S. Ewert and M. Mueller, “Using score-informed constraints for NMF- based source separation,” in Proc. IEEE Int. Conf. on Acoustics,
\?*L\i Speech and Signal Processing. IEEE, 2012, pp. 129-132.
NMF2:]J.-L. Durrieu, B. David, and G. Richard, “A musically motivated mid- evel representation for pitch estimation and musical audio source
Separation,” IEEE J. Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1180-1191, 2011.
lUNET:
[

D. Petermann, P. Chandna, H. Cuesta, J. Bonada, and E. Gomez, “Deep learning based source separation applied to choir ensembles,”
20 n pProc. Int. Soc. Music Inf. Retrieval Conf., 2020, pp. 733-739.
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A short audio demo and some take aways

* A short demo at

* https://schufo.qgithub.io/umss/

* Orlocal link

°* Some take aways

* Only a small amount of data needed
Filtering the mixture better than synthesis
Differentiable stable all-pole filter
Parameterization of the mixture is provided
Extension possible to a fully end-to-end approach [1]

RN

: \3 [1] G. Richard, P. Chouteau, B. Torres, A fully differentiable model for unsupervised singing voice separation, ICASSP 2024, with

NN

demo at https://pierrechouteau.github.io/umss_icassp/audio


https://schufo.github.io/umss/
file:///D:/Thèses/2018-Kilian-Schulze-Forster/site-web-demo-unsupervised-source-separation/schufo.github.io/umss/index.htm
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Symbolic music generation with transformers

°* Symbolic music

° Input: Tokens (text) of pianoroll

Music score

-g

NoteOn (50) TimeShift (9) NoteOn (60) NoteOn (65)
NoteOn (69) NoteOn(76) TimeShift (12) NoteOff (60)
NoteOff (65) NoteOff (69) NoteOff(76) TimeShift (3)
NoteOff (50) NoteOn (43) NoteOn(59) NoteOn (65)
NoteOn (69) NoteOn(76) TimeShift (24) NoteOff (All)

MIDI representation (or piano roll)

Representation as sequernce of tokens
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Symbolic music generation with transformers

5o i
'Qg,wnms
Cs [RigEm * Data-driven Symbolic Music Generation is hard!
o7 ol asedsee v Inconsistency in melody and rhythm, absence of multi-scale structures found in real
’ music [1]
v Practical limitations: limited dataset sizes
(compared to, e.g., language, vision)
feeds into limited model sizes
LakhMIDI - 600k samples, 65k dims/sample
° Possible solution to do more with less: hybrid deep models
| Hi-AUDIO
v Add knowledge about musical structure to data-driven models
erc

24 [1] Wu & Yang, "Compose & Embellish: Well-structures piano performance generation via a two-stage approach”, arXiV, 2022.
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Symbolic music generation with transformers

° Already many possibilities to exploit musical structure ...

» Long line of research to include structure in music generation systems [1]

» Particularly for Transformers:
» Tokens for musical structures [2-4]

» Positional Encoding using musical structure [5,6]

° ... But can we improve how Transformers represent and use structural
information?

[1] Bhandari & Colton, “Motifs, Phrases, and Beyond: The Modelling of Structure in Symbolic Music Generation”, EVOMUSART, 2024.
[2] Ren, et al., "PopMAG: Pop music accompaniment generation”, ACM MM, 2020.

[3] Huang & Yang, “Pop Music Transformer: Beat-based modelling and generation of expressive pop piano compositions”, ACM MM, 2020.

[4] Hsiao, et al., “Compound word transformer: Learning to compose full-song music over dynamic directed hypergraphs”, AAAI, 2021.
[5] Liu, et al., “"Symphony Generation with permutation invariant language model”, arXiV, 2022.

[6] Guo, Kang & Herremans, “A domain-knowledge-inspired music embedding space and a novel attention mechanism for symbolic music modeling”, AAAI, 2022.
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Symbolic Music Generation

* For example with transformers :

* Attention: Invariance to temporal order of inputs

Towards exploiting « musical structured informed »

X X . . . X’l

|
Amn

b

Y Y2 ¢ o o Ym

Role of the PE: to provide the information about
which element of the input sequence comes in
which order.

Position Encoding (PE)

Output
Probabilities
[ Softmax |
( N\
‘—Add & Norm
Feed
Forward
g 1 ™\ l Add & Norm F_:
[—-—]Add ol Multi-Head
Feed Afttention
Forward 3 7 Nx
—
Nix Add & Norm
(—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
\ J \ p—)
Positional Positional
Encodi Q ¢ i
ncoding Encoding
Input QOutput
Embedding Embedding
Inputs Qutputs
(shifted right)

M. Agarwal, C. Wang, G. Richard. Structure-informed Positional Encoding for Music Generation. /EEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Apr 2024, Seoul, South Korea.



Symbolic Music Generation

@ IP PARIS ° Attentlon
G. Richard

. _
Toalea T T T el Yi = EZ” o :” with a,,; = exp j—%
T

music generation \

qi T
Unj = qj k'n;
a1
az]
31
(275
(1
| Hi-AUDIO T Sy
Y| Y2 Y3 » * Yn
27 ({(-\ﬁ\ﬂi M. Agarwal, C. Wang, G. Richard. Structure-informed Positional Encoding for Music Generation. /EEE International Conference on Acoustics, Speech and Signal Processing
N (ICASSP), Apr 2024, Seoul, South Korea.
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Symbolic Music Generation

Absolute positional encoding (APE)

* Classic Positional Encoding FEELRERE + FREE R 2= g)

Relative positional encoding (RPE)

e Structure Positional Encoding Absolits postional encoding (APE)

EEEENE + FEEEERE (7= 56

Relatwe posrtlonal encoding (RPE)

e ™ M. Agarwal, C. Wang, G. Richard. Structure-informed Positional Encoding for Music Generation. /EEE International Conference on Acoustics, Speech and Signal Processing
‘\ 3
(ICASSP), Apr 2024, Seoul, South Korea.
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Symbolic Music Generation

« musical structure-informed » Position Encoding (PE)

°* From No Positional Encoding

X NoPE

v [ ...to Absolute PE

: —>' ',i | t

: bR £ S t. ...to structured APE : o

"" | i
. NoPE ructure AP . CORE LR
3 ® X ' st APE —> I. I:; L

“edotolo |,
& & & p &

o W &
e on@s%no™® preh

Results show that better music generation can be achieved by using knowledge
about musical structure in data-driven Transformers through Positional Encoding

./-\\'\ ~~\\i M. Agarwal, C. Wang, G. Richard. Structure-informed Positional Encoding for Music Generation. /EEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Apr 2024, Seoul, South Korea.
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Accompaniment generation from melody tracks

e llustration
'Qg,w PARIS
G. Richard * Our structure-informed positional encoding captures large-scale and
small-scale structures :
Exploiting knowledge
for mode/—base_'d deep . . . . . ]
g v’ Self-similarity matrices of chroma profiles (chroma is a feature
representation capturing chords information)
Baseline APE Baseline RPE Our RPE Our APE
Structure Structure Structure
i ‘ ‘ | |
| Hi-AUDIO
cerc
30 Q 'm‘\i M. Agarwal, C. Wang, G. Richard. Structure-informed Positional Encoding for Music Generation. /EEE International Conference on Acoustics, Speech and Signal Processing

e (ICASSP), Apr 2024, Seoul, South Korea.
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Extension for linear complexity structure-informed PE

° Exploiting a kernelized form of attention [1,2]
amn = K(dm: kn) = B[ é(am)(kn) "
* With multiple instantiations, ¢ captures, on average, the relationship between q,, and k,,
» leads to linear-complexity Transformers.
* Applicable for Absolute Position Encoding
* Stochastic Position Encoding [3] => Applicable to Relative PE with linear complexity

* Key ideas:

D
* Express the Attention matrix with position kernels A = cxp([Z GmaPa(m, n)knd] / \/5>

d=1

* Express the position kernel as a covariance matrix (VM,N) (Vm,n) Pa(m,n) = E [Q4(m)K 4(n)]

° Extension to structure-informed stochastic Position Encoding [4]

[1] Y.-H. H. Tsai & al. Transformer Dissection: An Unified Understanding for Transformer’s Attention via the Lens of Kernel,” EMNLP, 2019
[2] K. M. Choromanski, & al. Rethinking Attention with Performers,” ICML,2021

[3] A. Liutkus & al. Relative Positional Encoding for Transformers with Linear Complexity,” ICML, 2021

[4] M. Agarwal & al, F-StrIPE: Fast Structure-Informed Positional Encoding for Symbolic Music Generation, ICASSP 2025.
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Extension for linear complexity structure-informed PE

° F-StrIPE: Structure informed stochastic Position Encoding [4]

The positional matrix Py captures the relationship between pairs (m,n)
of timesteps from the positional index sequences Py = {1,...,m,...,Tp} and
PK = {1, <euy T2, ?TK}

F-StrIPE: exploiting structure-aware positional indices p; = s(i) instead of
classic time indices p; = 1

Stochastic
Fourier Features

|

Rfcm(lmn
Fourier Features

AR : . ‘ ~,

diag(Q. 4) ‘ diag(K. 4)

[4] M. Agarwal & al, F-StrIPE: Fast Structure-Informed Positional Encoding for Symbolic Music Generation, ICASSP 2025.
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- * Demo page at : bit.ly/faststructurepe
Exploiting knowledge
for mode/—base_'d deep
"  Best example for « Chroma similarity » metric (training 16 bars of melody — generation 16
bars of accompaniement)
F-StrIPE:C ; Chroma Similarity ; Melody
Time
F-StrIPE:C ; Chroma Similarity ; Melody + Accompaniment
| Hi-AUDIO Time
crc
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[4] M. Agarwal & al, F-StrIPE: Fast Structure-Informed Positional Encoding for Symbolic Music Generation, ICASSP 2025.
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Timbre transfer : a specific application of style transfer
=A™ to music
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Image style transfer
Exploiting knowledge CO N t-e n t-
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Generated image

* Timbre transfer in music

Generated audio:
Saxophone playing the original trumpet content

Content ‘
IIIII I.Ii-AUDio # ‘l‘ | - o 1 ! %!;lp_rp_._lé—dﬁil._-q::
—oF el F Y

erc Trumpet
e . Saxophone
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WavTransfer: A Flexible End-to-end
Multi-instrument Timbre Transfer with Diffusion

°* Timbre Transfer:
* Essential for distinguishing sounds with the same pitch and loudness
* Modifies the tonal quality while preserving pitch and structure

* Common models : Need for separate models for each pair of instrument for
timbre transfer

°* WaveTransfer[1]:
* Works for audio mixtures and individual instruments
* Generates audio waveforms directly
* Operates at multiple sampling frequencies 16 kHz and 44.1 kHz

[1] T. Baoueb, X. Bie, G. Richard, WaveTransfer: A Flexible End-to-end Multi-instrument Timbre Transfer with Diffusion, ICASSP 2025
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I * Characterising a data distribution by gradually introducing noise into samples
Zf’gfgif%dﬁep for T steps and then learning the process of reversing it

Reverse Process
po(X¢— 1|Xt
@ = —@ @z
thxt 1

il|in Hi-AUDIO qg(xt|xi-1) = N (x¢; V1 — Bexi—1, Be])

erc @

37 J. Ho & al. Denoising diffusion probabilistic models, in NeurIPS, 2020
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Reverse Process

Background @H -@X @z —®
Denoising diffusion probabilistic models (DDPMSs) o . &
g{Xe|Xe=1) = N (%3 \/I Bixe—1, 50D
® xo~q(xo): an initial sample, {B;}’_;: a noise schedule
® letoy=1—pf and &; = ;:1 o,. X; can be sampled at any arbitrary time step t:
Forward Process: x; =/ 0yxg++/1— &€, € ~ .4 (€;0,1) (1)
® The training loss is given by:
Zo =minE [lleg (x1,1) &3] (2)

® During inference, we can iteratively sample the data from x7 ~ .4 (x7;0,I) to xq via:

1 l—a,
V0 Vl_at

where o; is a time dependent constant.

X1 =N (X—1;

( (Xfa ))>Gt21)7 (3)

J. Ho & al. Denoising diffusion probabilistic models, in NeurIPS, 2020
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Timbre transfer : principle of WaveTransfer [1]

* Extending Wavgrad [2] for timbre transfer.

° Timbre transfer objective: generate a target audio XOA from a random noise x%
and conditioning audiox;;
. XT
~ | Diffusion i
Random Noise x; X Target audio x{;
¥ Condition

bt i

Conditioning audio xg

B

Mel spectrogram m

Same content as xg f

but timbre from instrument A

[1] T. Baoueb, X. Bie, G. Richard, WaveTransfer: A Flexible End-to-end Multi-instrument Timbre Transfer with Diffusion, ICASSP 2025
[2] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan, “Wavegrad: Estimating gradients for waveform generation,” in Proc. ICLR, 2021
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WaveTransfer: Training process

® Supervised Training: Aligned dataset
° xf)‘ and xg: same content, # instruments

Noise level

\/’().;

Gofe—Gm— _  Bepemfummen [(f)] - :

Forward

—
Target audio x;, Permutation of target audio x}
= = ver iffusi
y} b \/;X,(: + T =ak Re ersr;(cjizalusnon

M et

Conditioning audio xg

B

Mel spectrogram m

Lo = meinlE [Hee (\/ctyx{f +v1— ae,m”, \/5> — €

J

Estimated noise
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WaveTransfer: Inference

X‘;- o~ ./V(o, I) _./ Reverse Step —-/ x;"_l —n/ veov -./ xg

Random noise Target audio

Noise level \/é—r \
Input audio  xj = €e(x’},m8,\/5) # € - X?"—l

Conditioning mel m? - Estimated
noise

T. Baoueb, X. Bie, G. Richard, WaveTransfer: A Flexible End-to-end Multi-instrument Timbre Transfer with Diffusion, ICASSP 2025
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Wavetransfer: Timbre transfer demo

https://wavetransfer.github.io/

* Timbre transfer : piano to vibraphone @6 k+z)

Input AR

(ground truth) Music-STAR | DiffTransfer

leGQIobaI
Sloel with BDDM-

with WG-6

Pirates of
Caribbean

* Mixture of Timbre transfer : piano+strings -> vibraphone + cl

Input Target . 16 WTC opal
NETTE (ground (ground g.:f:g DiffTransfer mh g/'\‘;g"'(s with BDDM-
truth) truth) 20

20

arinet

T mix with BDDM-
with WG-6

Beethoven

T. Baoueb, X. Bie, G. Richard, WaveTransfer: A Flexible End-to-end Multi-instrument Timbre Transfer with Diffusion, ICASSP 2025

!

Only trained on the
specific mixtures



Wavetransfer

—d 4|
’Qg_lppAms
AR * Capabilities of the model
Exploiting knowledge . . . . - .
o * Handles timbre transfer for both audio mixtures and individual instruments
In one model
* Eliminates the requirement for separate model training for each timbre
transfer
° Current Limitations
* Relies on an aligned dataset
* Limited instrument diversity in timbre transfer
| Hi-AUDIO
crc
43

T. Baoueb, X. Bie, G. Richard, WaveTransfer: A Flexible End-to-end Multi-instrument Timbre Transfer with Diffusion, ICASSP 2025
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To conclude

* The potential for hybrid deep learning ...

Interpretability, Controllability, Explainability
* Hybrid model becomes controllable by human-understandable parameters
° New audio capabilities: perceptually meaningful sound transformation

° Frugality: gain of several orders of magnitude in the need of data and model complexity
° Towards a more resource efficient and sustainable Al

° Applicable to many audio processing problems
° Exploiting room acoustics for Audio dereverberation [1],
° Exploiting physical/signal models for music synthesis [2],
* Exploiting “audio class specific” codebooks for audio compression and separation [3]
* Exploiting key speech attributes for controlled speech synthesis and transformation [4]

Louis Bahrman, Mathieu Fontaine, Gael Richard. A Hybrid Model for Weakly-Supervised Speech Dereverberation. /EEE ICASSP 2025, (hal-04931672)

Lenny Renault, Rémi Mignot, Axel Roebel. Differentiable Piano Model for MIDI-to-Audio Performance Synthesis. Int. Conf.on Digital Audio Effects (DAFx20in22), Sep 2022, Vienna,

[3] Xiaoyu Bie, Xubo Liu, Gaél Richard. Learning Source Disentanglement in Neural Audio Codec. /EEE ICASSP 2025 , (hal-04902131)

[4] Samir Sadok, Simon Leglaive, Laurent Girin, Gaél Richard, Xavier Alameda-Pineda. AnCoGen: Analysis, Control and Generation of Speech with a Masked Autoencoder. /EEE ICASSP 2025, {hal-

04891286)
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