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Brief History of metamaterials / metasurfaces 
for wavefronts control
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1. Metasurface definition

 Two-dimensional arrays of subwavelength-scale artificial elements,
arranged in a specific pattern to manipulate the propagation of
light at subwavelength scales

 Geometry, size and arrangement of
meta-atoms Tailor EM response

 Planar structures that can be fabricated
on flat substrates, making them compatible
with existing fabrication techniques

 Metasurfaces can control the phase, amplitude, and polarization
of incident light across a planar surface, enabling unprecedented
control over the wavefront of light
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1. Metasurface definition: Design evolution

homogeneous periodic structures

inhomogeneous structures
spatially modulated

(in)homogeneous structures
temporally modulated



8

1. Metasurface definition: Design evolution
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2. Metasurface classification

3 main categories

 Dense metasurfaces

 Metagratings

 Sparse metasurfaces
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Dense Metasurfaces

• Continuous impedance sheets, i.e., they require dense
distribution of unit cells

• Designed by means of local periodic approximation (LPA)

• So far, metasurfaces present narrow-band performances

characteristic of the whole array:

𝑍𝑖𝑛 = 𝑍0
1+𝑆11

1−𝑆11

Uniform arrayNon-uniform array
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Dense Metasurfaces

sin 𝜃𝑡 𝑛𝑡 − sin 𝜃𝑖 𝑛𝑖 =
𝜆0
2𝜋

dΦ 𝑥

d𝑥

𝜃𝑡
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Dense Metasurfaces

Phase-gradient 
metasurfaces

Performance is 
fundamentally 

limited: increased 
side-lobes level

Many elements: high 
absorption because 

of many tunable 
elements
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Dense Metasurfaces

• Concept: strong non-locality • Drawbacks

Complicated design 
procedure strongly 
relying on 3D full-wave 
optimization

Dense arrangement of 
elements

engineering the interaction between distant parts by SW
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Dense Metasurfaces: Huygens’ metasurfaces

• Huygens’ principle: 
each point on a wavefront acts as a secondary source of outgoing waves



15

Dense Metasurfaces: PB phase metasurfaces

A rotation of q will
introduce a phase shift of 2q

• Pancharatnam-Berry phase: 
geometric phase associated with the 
polarization of light. When the polarization 
of a beam traverses a closed loop on the 
Poincaré sphere, the final state differs from 
the initial one by a phase factor equal to 
half of the W area, encompassed by the 
loop on the sphere.
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Dense Metasurfaces: Coding metasurfaces

By coding ‘0’ and ‘1’ elements with 
controlled sequences (i.e., 1-bit 
coding), EM waves can be 
manipulated to realize different 
functionalities
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Metagratings

Diffraction grating:

 periodic optical structure with infinite extent in one direction,
which is able to diffract light incident on its surface1

Blazed (echelette) grating:

 capable of scattering an incident wave into a specific diffraction
order2 m=0

m=-1 m=1

m=-2 m=2

1M. Born, E. Wolf, “Principles of Optics,” chap. Element of the theory of diffraction, pp. 412–516.
2E. V. Jull et al., “Gratings that diffract all incident energy,” J. Opt. Soc. Am.  67(4), 557 (1977).
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Metagratings

 Metasurfaces: limitations in terms of efficiency and fabrication, in
particular for extreme manipulation

 1D gratings: profile modulation in one direction, a translational
symmetry in the other and no control of energy in the orders

 Metagratings:
– evolution of 1D diffraction gratings (construction from meta-atoms whose

scattering properties can be judiciously engineered)

– translation-invariant direction is engineered at a scale < l

– definition of an averaged macroscopic quantity (impedance density)
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Metagratings
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Metagratings

Periodic 
structures

Only discrete 
angles are 
accessible 

Plane-wave 
illumination

𝐿 = 𝜆0

𝐿 = 3𝜆0/2
𝐿 = 2𝜆0

𝐿 = 5𝜆0/2
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Metagratings

The diffraction problem can be solved exactly:

𝐴0
𝑇𝐸

𝐴−1
𝑇𝐸

𝐴−2
𝑇𝐸

Excitation field
Input impedance

Mutual impedance

Load impedance densities 𝑍𝑞 of the line 

currents 𝐼𝑞 are found from:

diffraction angles :
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Metagratings

ℜ 𝐸𝑥
𝑒𝑥𝑐

(𝑦0𝑞, −ℎ)𝐼𝑞
∗ −෍

𝑝=1

𝑁

𝑍𝑞𝑝
𝑚
𝐼𝑝𝐼𝑞

∗ = ℜ[𝑍𝑖𝑛] 𝐼𝑞
2

In order to deal only with loads ℜ 𝑍𝑞 = 0 the following equation 

has to be satisfied:

• It is a set of N second order algebraic 
equations

• When 𝑁 = 𝑀, it is impossible  to 
satisfy both equations in general

• Scattering losses appear

𝐴0
𝑇𝐸=0

𝐴−1
𝑇𝐸=0

𝐴−2
𝑇𝐸



23

Sparse Metasurfaces

 𝑁 loaded wires are 
distributed along the 
surface of an arbitrarily-
shaped substrate

 The structure is 
illuminated by an arbitrary 
wave



24

Sparse Metasurfaces

The total field can be written as follows:

𝐸𝑥 𝒓 = 𝐸𝑥
𝑒𝑥𝑐

𝒓 + 𝐸𝑥
𝑠𝑐𝑡

(𝒓)

𝐸𝑥
𝑠𝑐𝑡

𝒓 = ∫ 𝐺𝑥𝑥 𝒓, 𝒓′ 𝐽𝑥 𝒓′ 𝑑𝒓′

Model of infinitely thin wires:

𝐽𝑥 𝒓 = ෍

𝑞=1

𝑁

𝐼𝑞𝛿 𝒓 − 𝒓𝑞

𝐸𝑥 𝒓 = 𝐸𝑥
𝑒𝑥𝑐

𝒓 +෍

𝑞=1

𝑁

𝐺𝑥𝑥 𝒓, 𝒓𝑞 𝐼𝑞

Ohm’s law:

𝑍𝑞𝐼𝑞 = 𝐸𝑥
𝑒𝑥𝑡

𝒓𝑞 −෍

𝑝=1

𝑁

𝑍𝑞𝑝
𝑚

𝐼𝑝

Mutual-impedance densities

Scattering problem
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Sparse Metasurfaces

Green’s function

A Green’s function is defined as:

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
+ 𝜀𝑟 𝒓 𝑘0

2 𝐺𝑥𝑥 𝒓, 𝒓′ = 𝑗𝜔𝜇0𝛿 𝒓 − 𝒓′

Mutual-impedance densities are calculated as:

𝑍𝑞𝑝
𝑚

= −𝐺𝑥𝑥 𝒓𝑞 , 𝒓𝑝 , 𝑞 ≠ 𝑝,

𝑍𝑞𝑞
𝑚

= −
1

2𝜋𝑟𝑒𝑓𝑓
∮ 𝐺𝑥𝑥 𝒓, 𝒓𝑞 d𝒓.

A Green’s function can be calculated numerically by means of full-wave 

simulations
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Sparse Metasurfaces

Printed capacitor Printed inductor

Im[𝑍𝐿]<0 Im[𝑍𝐿]>0

Change the gap to 
engineer the 

capacitive response

Change the effective 
length to engineer the 

inductive response

Implementation of loaded wires
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Sparse Metasurfaces

Designing sparse Metasurfaces

LPA of dense metasurfaces cannot be used for sparse ones

Sparse Metasurface
Non-uniform array          Uniform array

𝑍𝐿 𝑍𝐿

Dense Metasurface
Non-uniform array
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Sparse Metasurfaces

 𝐼 = −
2𝑑𝛽0

𝑘𝜂

𝐴0
𝑇𝐸−𝑅0

𝑇𝐸𝑒2𝑗𝛽0ℎ

1+𝑅0
𝑇𝐸 𝑒𝑗𝛽0ℎ

 𝑍𝑞𝐼 = 𝐸0 −
𝑘𝜂

4
𝐼𝐻0

2
𝑘0𝑟𝑒𝑓𝑓 − 𝑍𝑚𝐼

 𝐸0 = 1 + 𝑅0
𝑇𝐸 𝑒𝑗𝛽0ℎ

Load-impedance density engineering

 3D full-wave simulations are used to calculate 
𝐴0
𝑇𝐸 (𝑆11 scattering parameter) for a uniform 

array of loaded wires

 After that, analytical formulas are used to 
retrieve load-impedance density
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3. Metasurface applications

 Antennas

 Lenses

 Absorbers

 Polarization converters

 Wavefront engineering
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3. Metasurface applications: antennas

fr

fPRS

h

ultra-directive 
beam

Thickness h of the cavity at resonance:

We minimize (fPRS+fr) to reduce h → Metasurface1

ℎ =
𝜆

4𝜋
𝜙PRS + 𝜙r ± 𝑁

𝜆

2

1S. N. Burokur et al., Metasurfaces for high directivity antenna applications 
in book Metamaterial, ISBN 978-953-51-0591-6, InTech.
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3. Metasurface applications: antennas

A. Epstein et al., Nat. Commun. 7, 10360(2016)

Cavity-excited Huygens’ metasurface antenna

Modulated metasurface antenna
G.Minatti et al., IEEE TAP 65(4), 1532(2017) D. R. Smith et al., Phys. Rev. Appl. 8, 054048 (2017)

Waveguide-fed metasurface antenna

Transmit-array antenna
L. Di Palma et al., IEEE TAP 65(2), 529(2017)
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3. Metasurface applications: absorbers

O. Rance et al., Appl. Sci. 9(16), 3425(2019)

A. Sellier et al., Appl. Phys. A 117, 739(2014)

Z. Tan et al., 
IEEE TAP 71, 
1832(2023)

F. Boust et al. Opt. Lett. 47, 5305(2022)
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3. Metasurface applications: complex waves
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3. Metasurface applications: RIS
FD transmission: diversity gains to 
improve the received SNR at D and S

FD transmission: communicating with 
multiple terminals through reflection

FD transmission: S and D located at each side of a RIS and
LOS transmission is not available
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3. Metasurface applications: RIS
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3. Metasurface applications: RIS
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4. Actual trends: Temporal modulation

- Transition from the fundamental temporal 
frequency w0 to an infinite number of time 
frequency harmonics w0 ± nwm.

- Hence, the output wave includes time harmonics of 
the modulation wave
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4. Actual trends: Temporal modulation

At transmitting end:
- Beamforming
- radar-signal generation 

(no active RF devices)

At receiving end:
- capturing the echo waves
- transforming the broadband chirp signals into narrowband signals (avoiding the 

conventional RF hardware), lowering prohibitively high AD sampling rates
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4. Actual trends: Mathematical operations

– performing analog optical computations 
based on Fourier transform

– Edge detection operation: dramatic 
change of the derivatives of signals due 
to the sudden change of objects
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4. Actual trends: Multiplexing
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4. Actual trends: Learning-based metasurfaces
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5. Summary

 Various designs

 Various technologies/process

 Revisiting traditional architectures

 Novel designs with additional degrees of freedom

 Performances of metasurfaces v/s traditional devices ???
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Thanks for your attention!


