

Resources Constrained Learning for Edge Intelligence

INSTITUT POLYTECHNIQUE **DE PARIS**

Van-Tam NGUYEN

van-tam.nguyen@telecom-paris.fr

April 2nd, 2024

AIoT/Embedded AI market > 1/3 AI market

Global AIoT Market : \$144.07 Billion by 2028, growing at a CAGR of 38.1% (1) Global AI Market : \$422.37 Billion, growing at a CAGR of 39.4% (2)

Intel (Gaudi2)

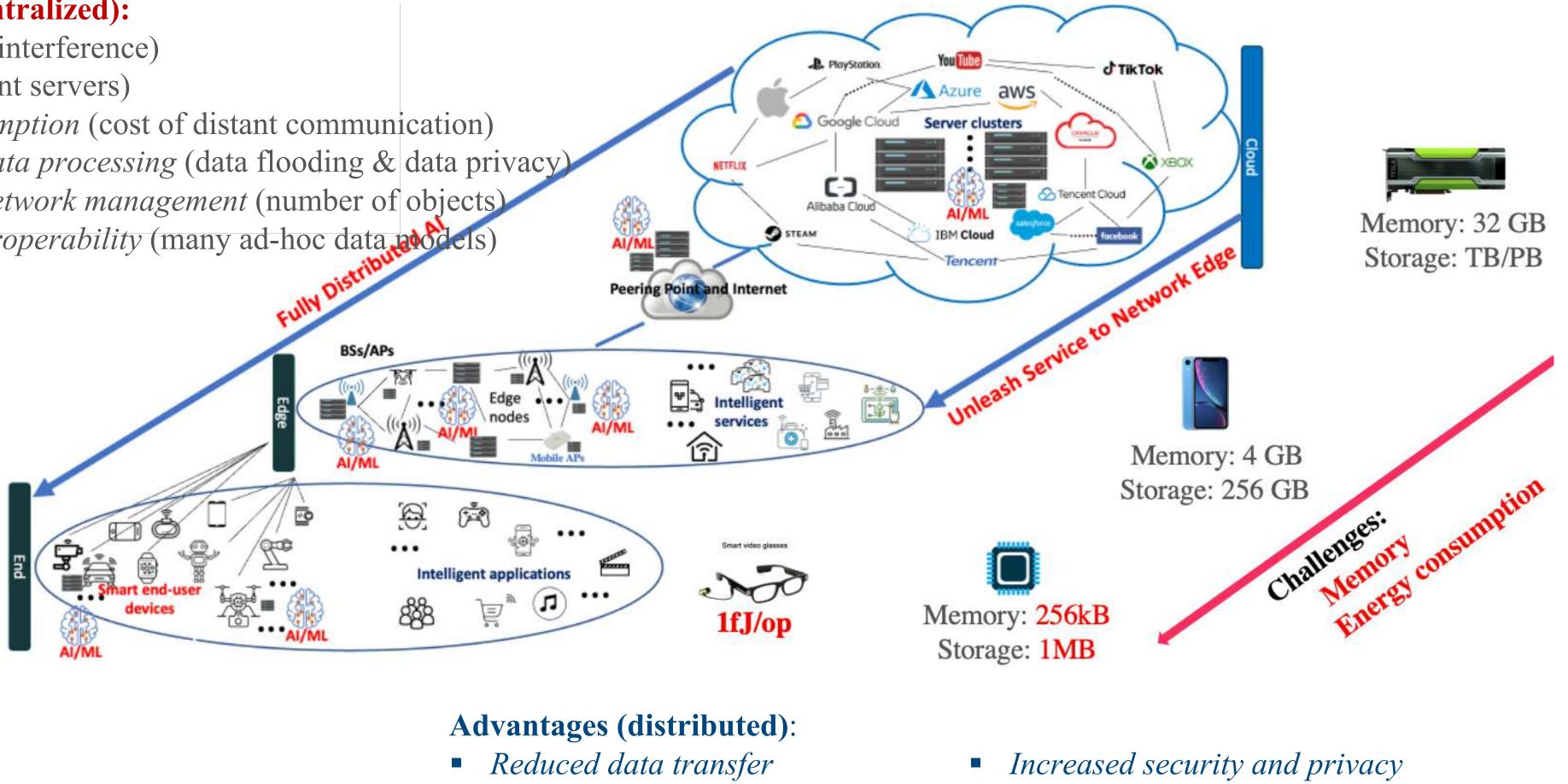
Sources :

- (1): https://www.linkedin.com/pulse/artificial-intelligence-things-aiot-market-projected-reach-sharma/
- (2): https://www.bloomberg.com/press-releases/2022-06-27/-422-37-billion-global-artificial-intelligence-ai-market-size-likely-to-grow-at-39-4-cagr-during-2022-2028-industry

Al in telecom at is all-time high

Problems in (centralized):

- *Connectivity* (interference)
- *Latency* (distant servers)
- *Energy consumption* (cost of distant communication)
- *Centralized data processing* (data flooding & data privacy)
- Centralized network management (number of objects)
- Semantic interoperability (many ad-hoc data models)



- *Low latency*

End-to-End AI for 6G

- Reduced network consumption
- Network flexibility
- Increased semantic interoperability

Is Edge Al Possible?

Training : Much larger Memory Footprint

On-Device Training Under 256KB Memory

Ji Lin^{1*} Ligeng Zhu^{1*} Wei-Ming Chen¹ Wei-Chen Wang¹ Chuang Gan² Song Han¹ ¹MIT ²MIT-IBM Watson AI Lab https://tinyml.mit.edu/on-device-training

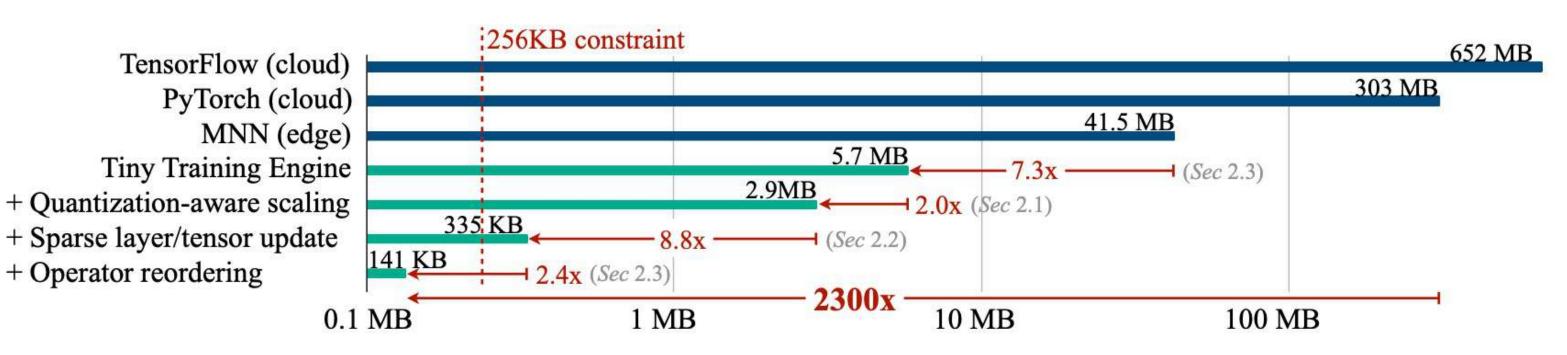
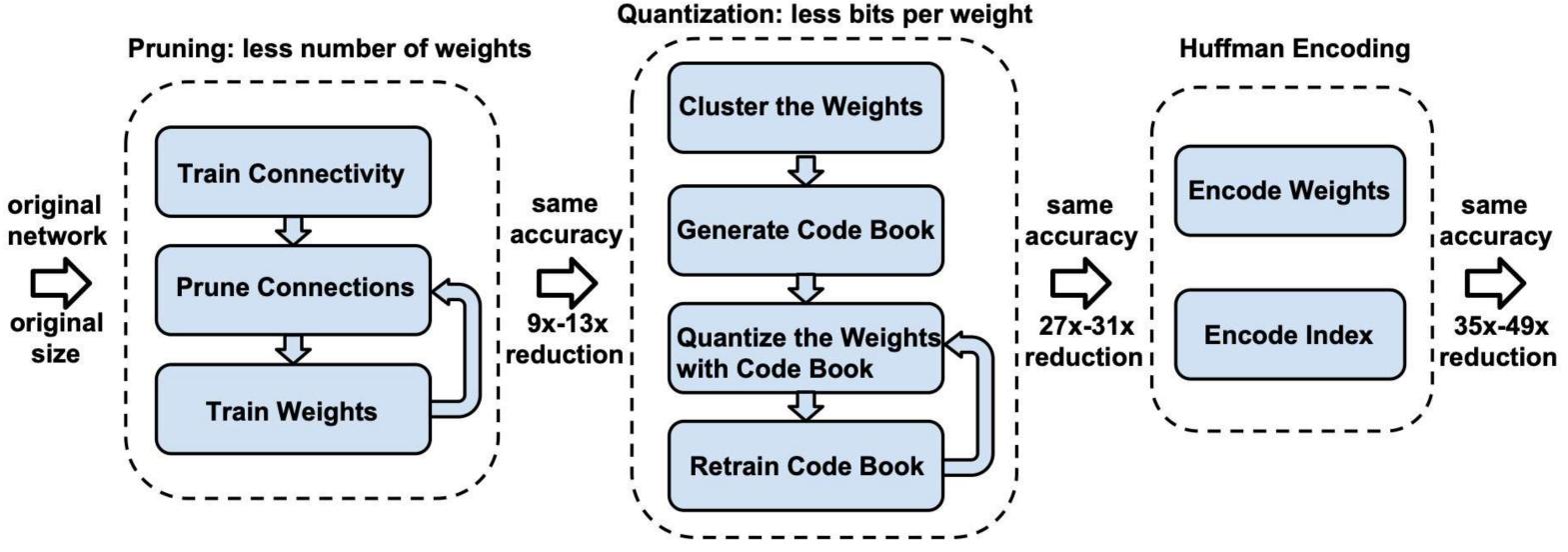


Figure 1. Algorithm and system co-design reduces the training memory from 303MB (PyTorch) to 141KB with the same transfer learning accuracy, leading to 2300× reduction. The numbers are measured with MobilenetV2w0.35 [60], batch size 1 and resolution 128×128. It can be deployed to a microcontroller with 256KB SRAM.

Al Inference on the Edge is Possible

Deep Neural Network : Over-parameterization

- AlexNet : 240 MB
- VGG-16 : 552 MB



Deep Compression

Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding." *ICML 2016*.

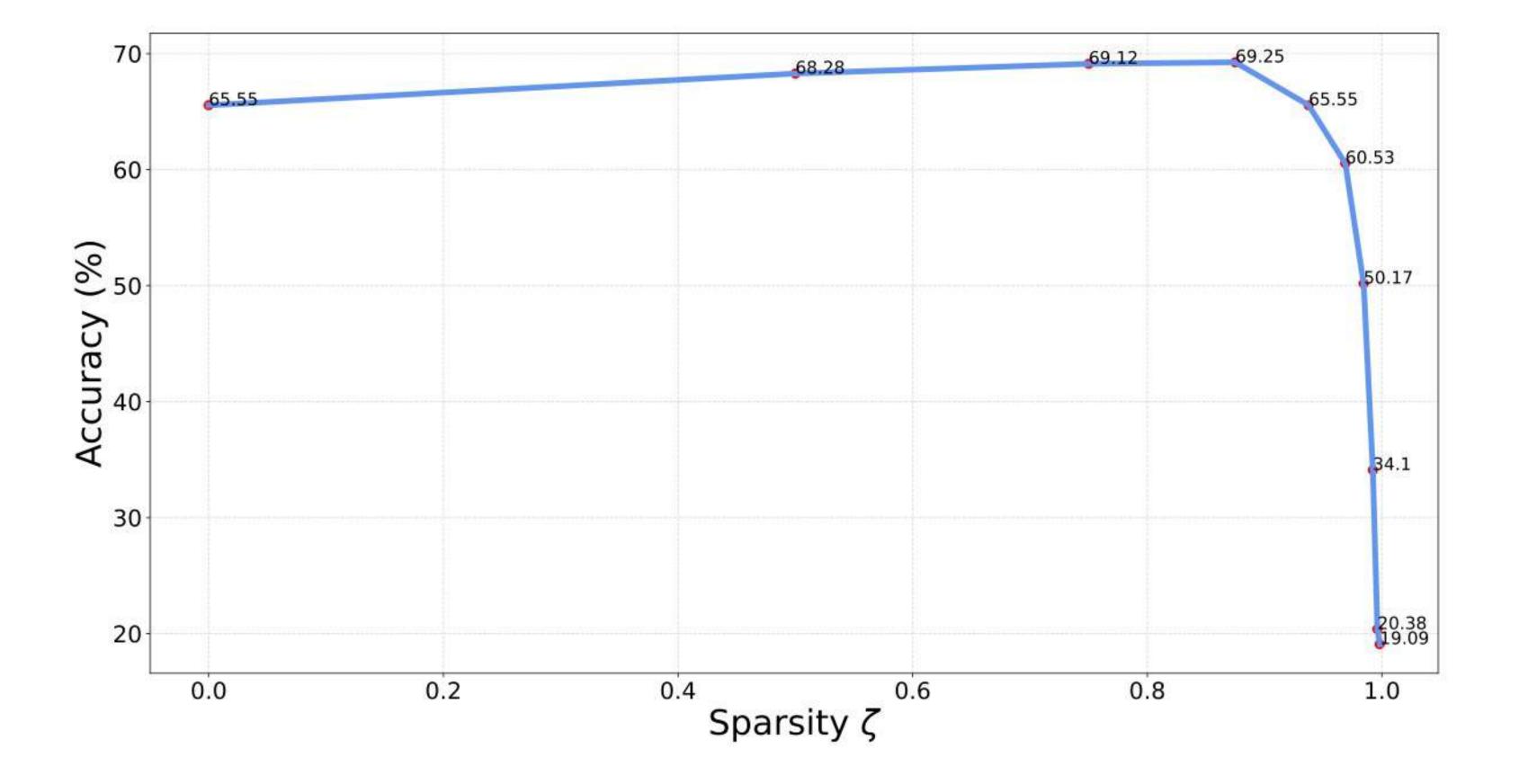
- AlexNet : 6.9 MB (35x)
- VGG-16 : 11.3 MB (49x)

Outline

- I. Compression for Inference
- II. Save Computation at Training
- III. Toward AI Training on the Edge
- IV. Conclusion

LeNet5

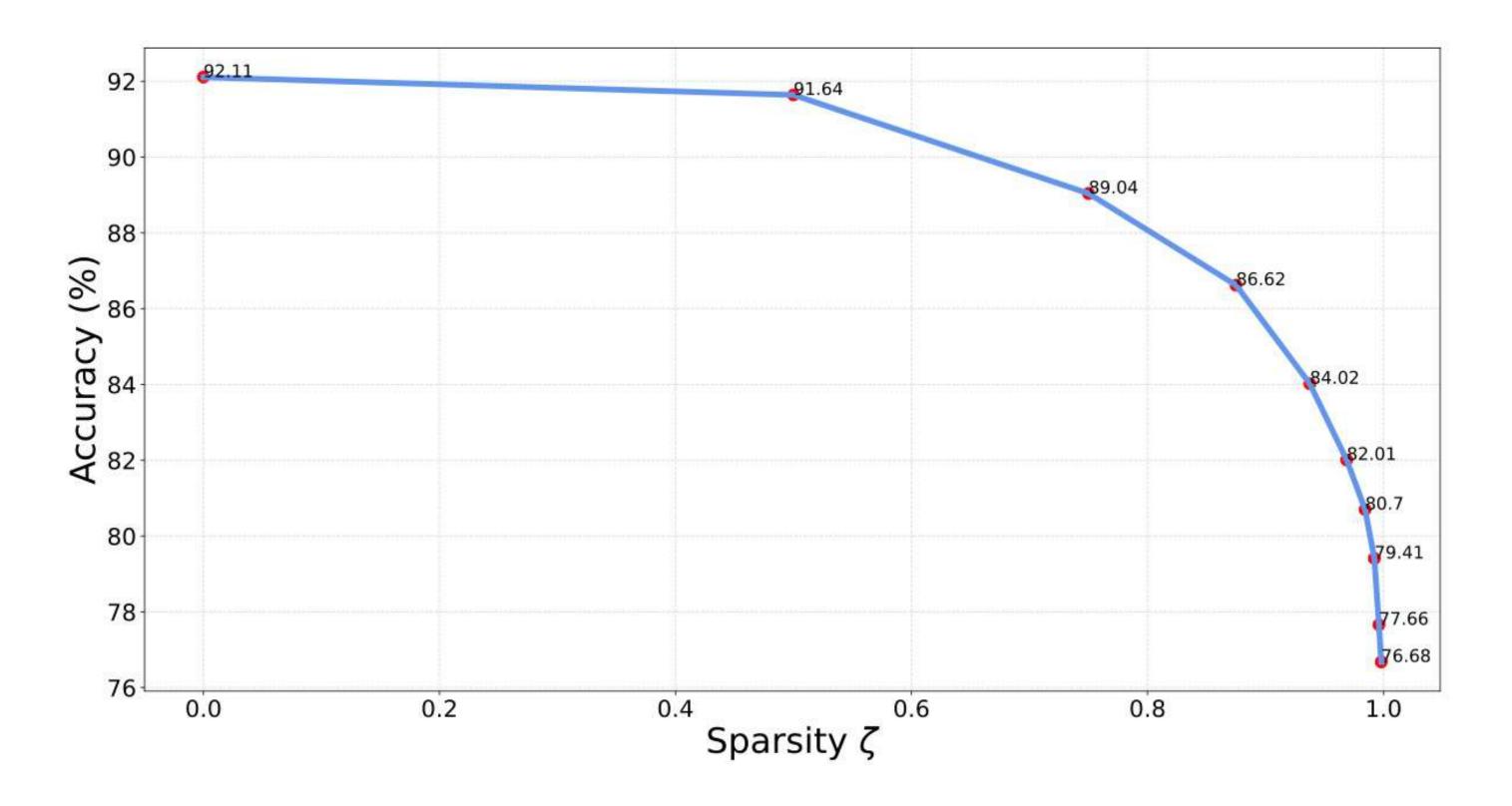
Cifar10



Unstructured Pruning and Sparsity

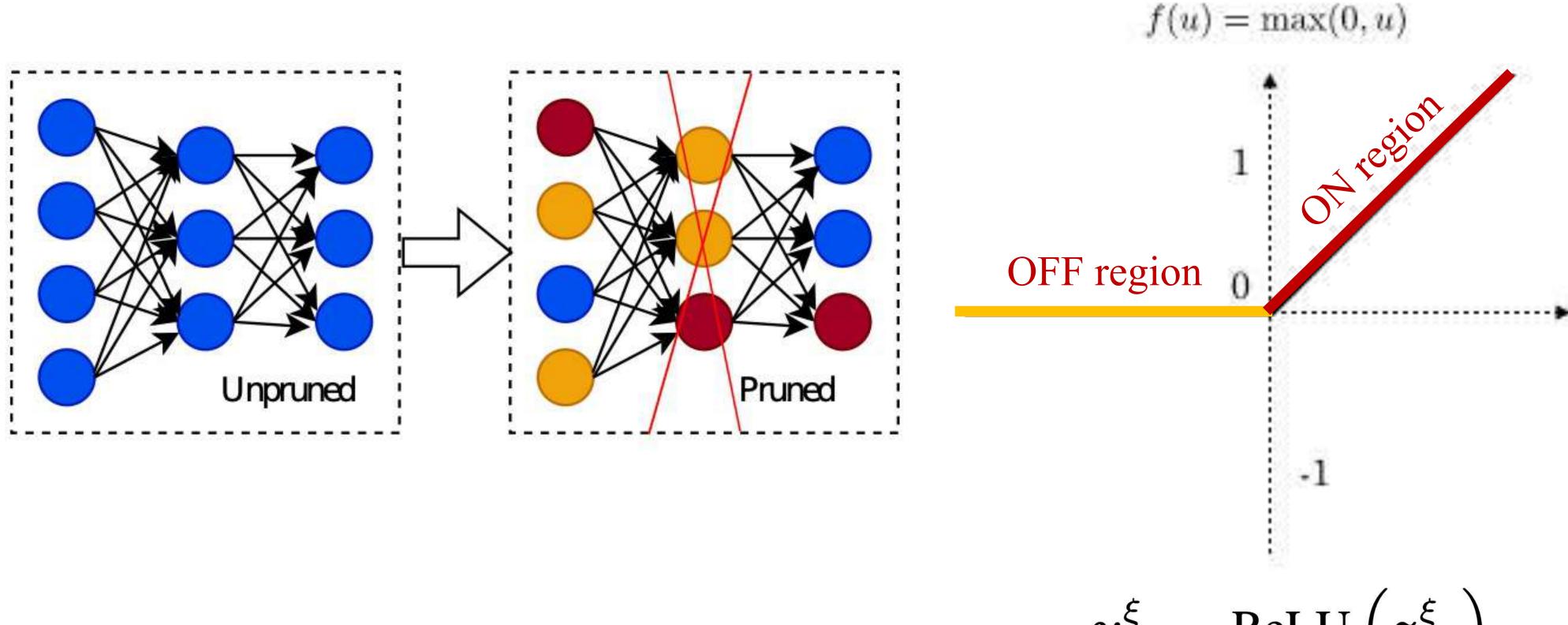
Swin Transformer

Cifar10



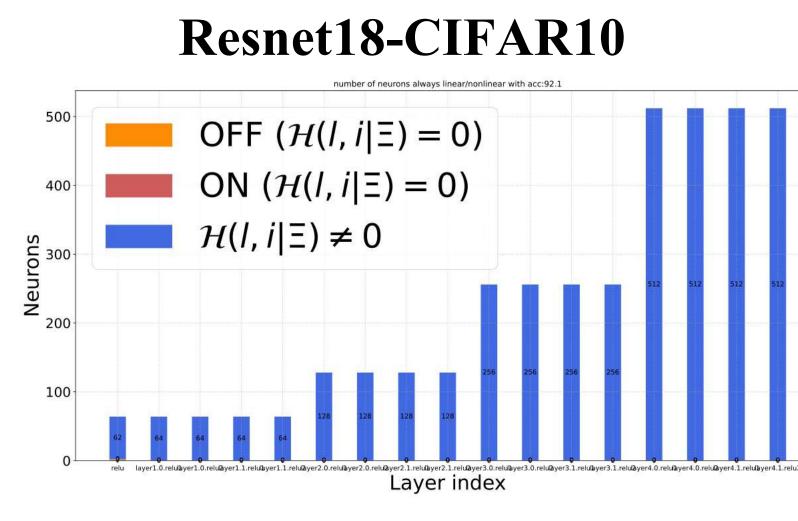
Unstructured Pruning and Sparsity

Compression for Inference

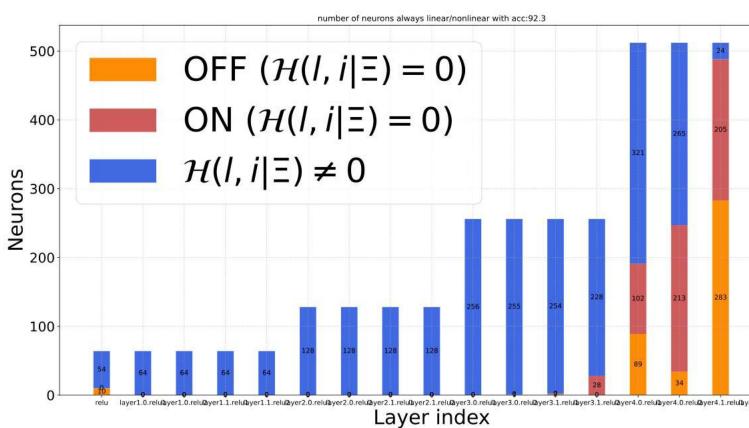


Depth Reduction ?

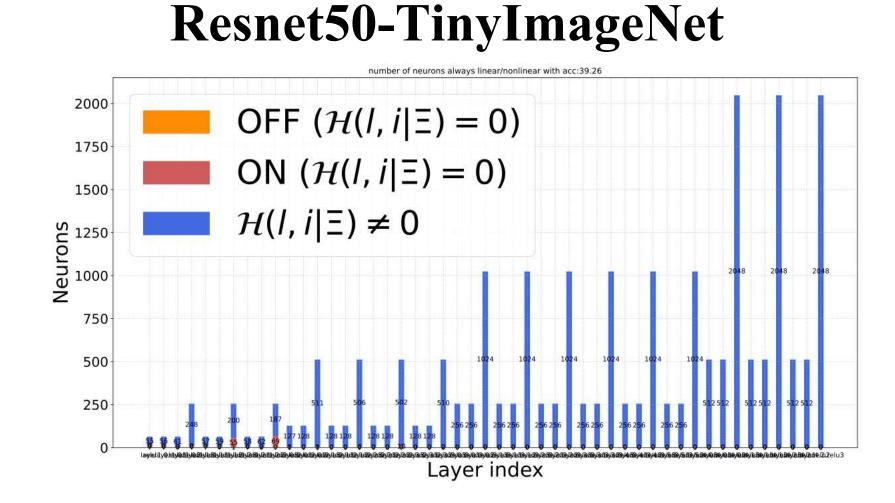
 $\boldsymbol{y}_{l,i}^{\xi} = \operatorname{ReLU}\left(\boldsymbol{z}_{l,i}^{\xi}\right)$



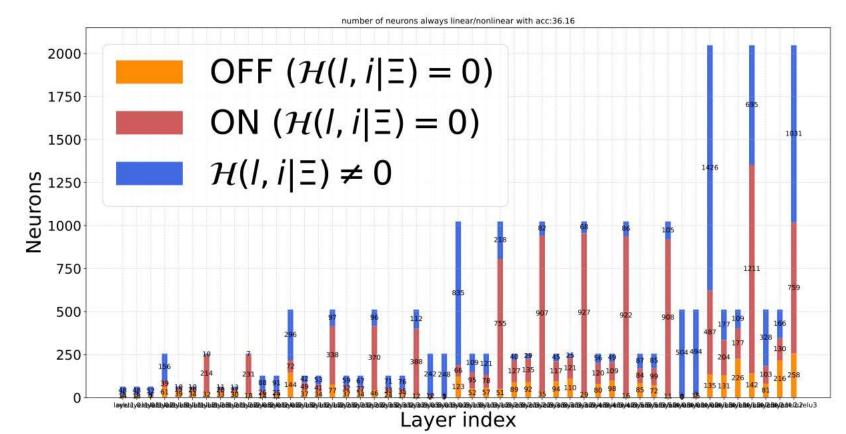
Pruning rate: 0.9921875

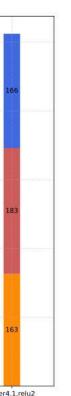


Depth Reduction ?

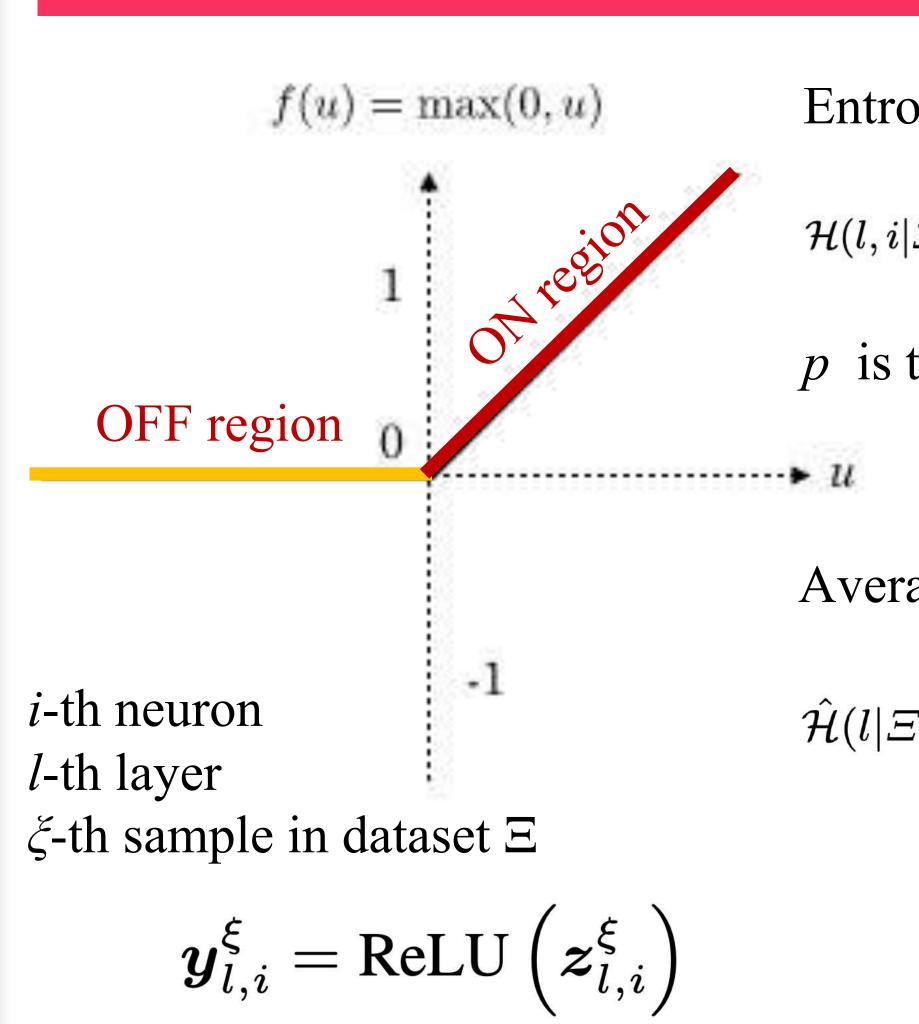


Pruning rate: 0.998046875





TELECOM Paris



Entropy Guided Pruning

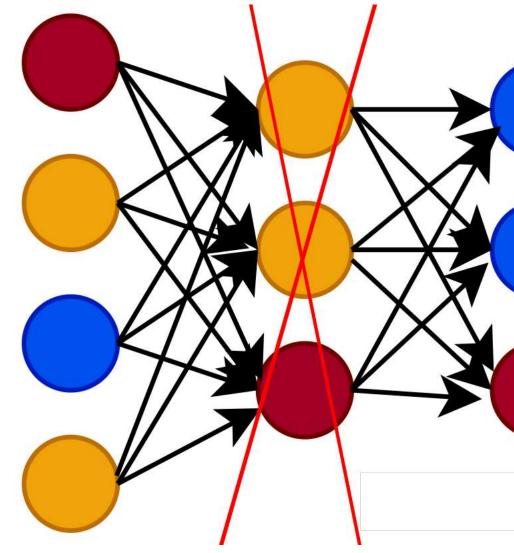
Entropy of the *i*-th neuron at the *l*-th layer:

$$\Xi) = -\frac{1}{\log(2)} \left\{ p^{\text{ON}}(l, i | \Xi) \log \left[p^{\text{ON}}(l, i | \Xi) \right] + p^{\text{OFF}}(l, i | \Xi) \log \left[p^{\text{OFF}}(l, i | \Xi) \log \left[p^{\text{OFF}}(l, i | \Xi) \right] \right\} \right\}$$

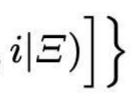
p is the frequency of the *i*-th neuron to be in the ON/OFF state

Average entropy for *l*-th layer

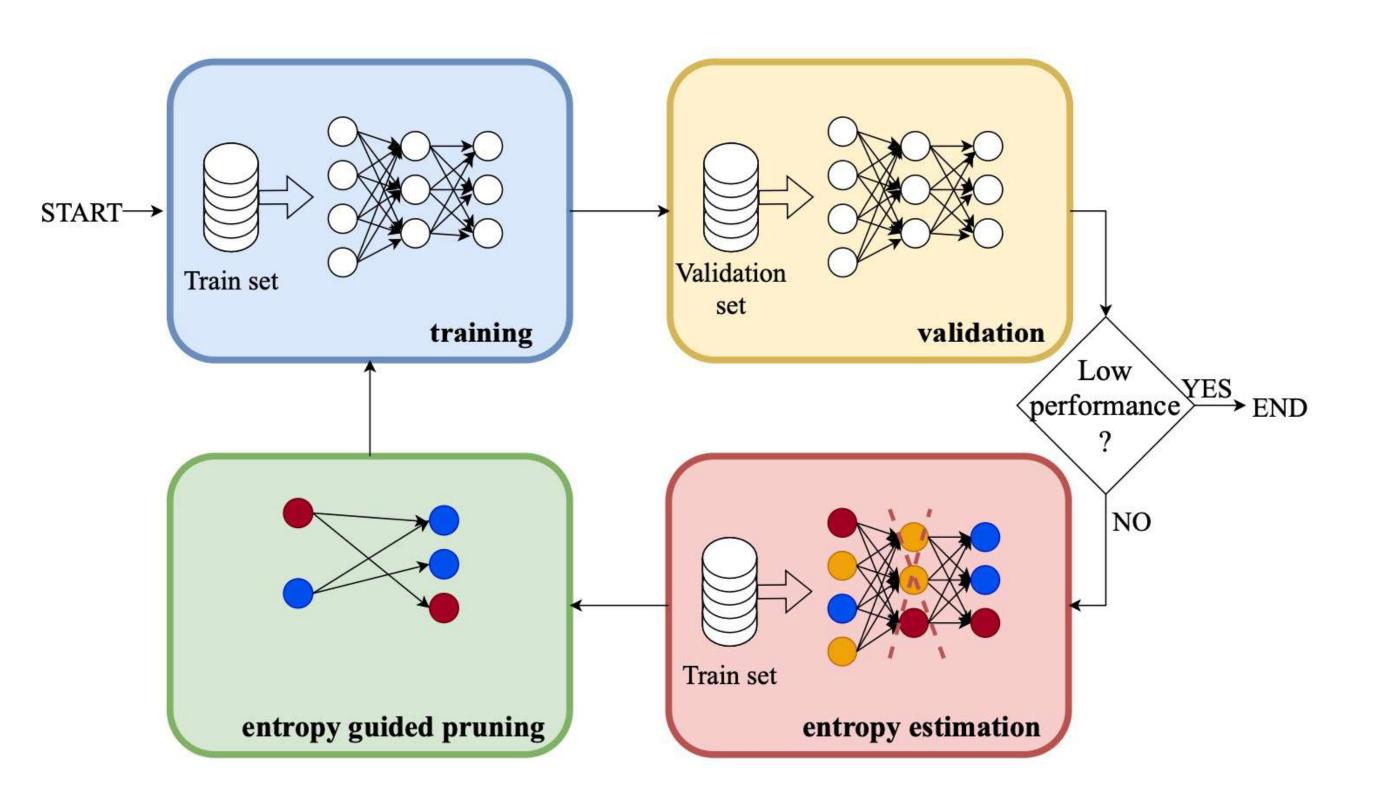
$$E(E) = rac{1}{N_l} \sum_i \mathcal{H}(l, i | \Xi)$$



Entropy = 0 => PRUNED



Compression for Inference



- Iterative pruning based on the entropy of different layers.

Entropy Guided Pruning

More pruning should be applied to layers with lower entropy (more likely to reach zero entropy). To minimize the impact on model performance, more pruning should be done on smaller magnitude weights.

Pruning irrelevance meter :

The larger this value is, the least we are interested in removing parameters from this layer

Pruning relevance:

Amount of parameters to be removed at the *l*-th layer:

 $\|\theta_l\|_0^{\text{pruned}} = \|\theta\|$

Entropy Guided Pruning

$$\mathcal{I}_{l} = \hat{\mathcal{H}}(l|\Xi) \cdot \frac{1}{\|\theta_{l}\|_{0}} \sum_{i} |\theta_{l,i}|$$

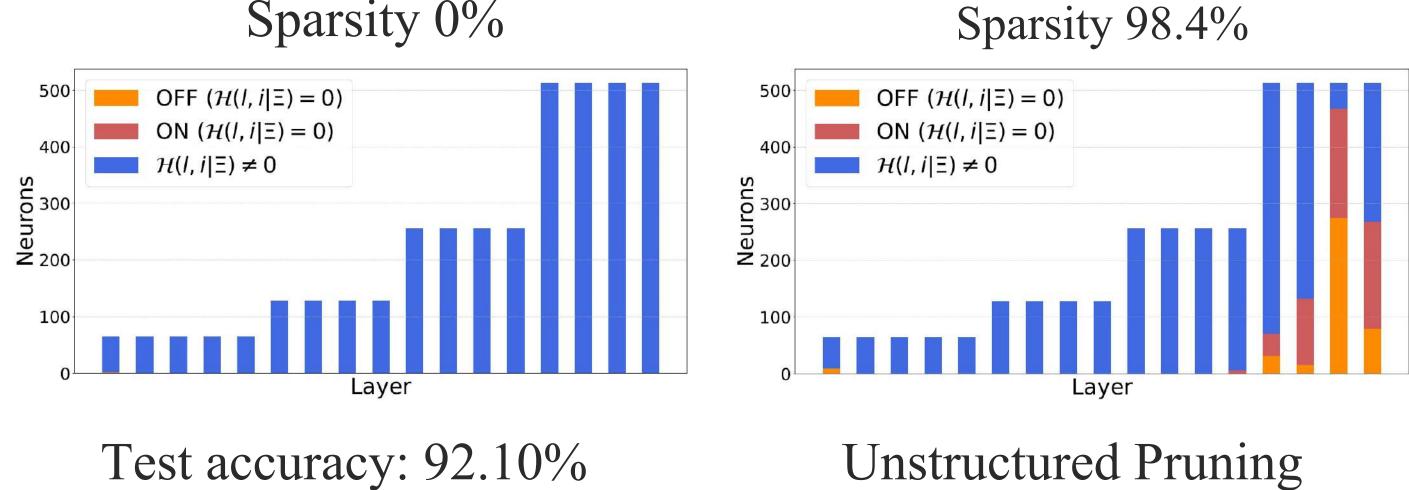
Layer's Entropy

Cardinality of the non-zero weights in the *l*-th layer (Magnitude)

$$\mathcal{R}_{l} = \begin{cases} \frac{\sum_{j} \mathcal{I}_{j}}{\mathcal{I}_{l}} & \mathcal{I}_{l} \neq 0\\ 0 & \mathcal{I}_{l} = 0 \end{cases}$$

$$\|_{0}^{\text{pruned}} \cdot rac{\exp[\mathcal{R}_{l} - \max_{k}(\mathcal{R}_{k})]}{\sum_{j} \exp[\mathcal{R}_{j} - \max_{k}(\mathcal{R}_{k})]}$$

Compression for Inference

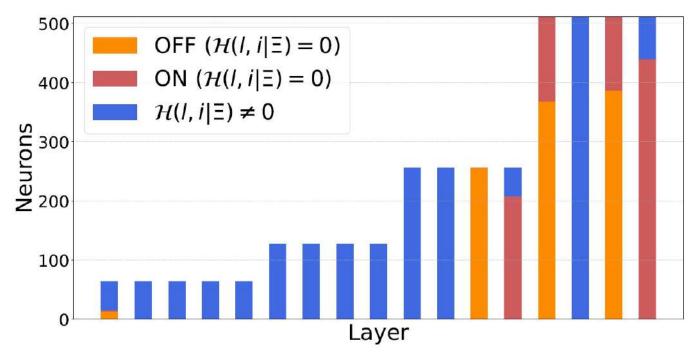


14

Experiments

ResNet-18 trained on CIFAR-10

Test accuracy: 92.73%



Entropy Guided Pruning Test accuracy: 93.12%

ResNet-18 on CIFAR-10 Swin-Treansformer on Tiny-ImageN

Notice:

Non-linear activation in ResNet-18: Rel Non-linear activation in Swin-T: GELU

Z. Liao, V. Quétu, V. T. Nguyen and E. Tartaglione, "Can Unstructured Pruning Reduce the Depth in Deep Neural Networks?," in Workshop on Resource Efficient Deep Learning for Computer Vision, ICCV Workshop 2023.

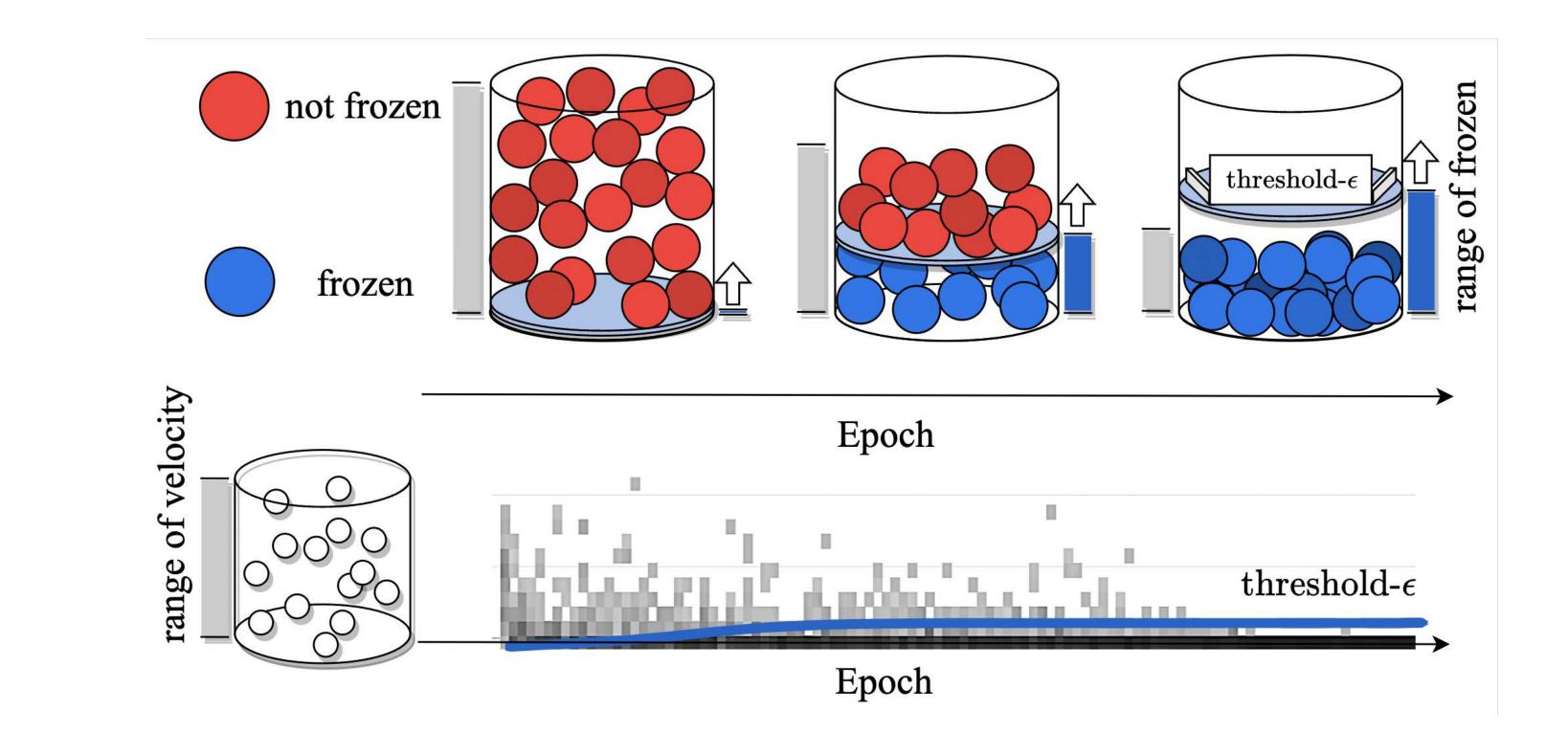
Experiments

-		
	et	

Ι	J	J	,	
J				

Model	Sparisty	EGP	Lay. rem.	TOP-1
	0.0		0/17	92.10
	50.0		0/17	92.56
	50.0	\checkmark	1/17	92.36
Resnet-18 on	75.0		0/17	93.00
CIFAR-10	73.0	\checkmark	1/17	92.81
CIFAN-10	93.8		0/17	93.03
	95.0	\checkmark	3/17	92.93
	98.4		0/17	92.73
	50.4	\checkmark	3/17	93.12
	0.0		0/12	75.38
	50.0		0/12	74.06
	50.0	\checkmark	1/12	71.48
Swin-T on	75.0		0/12	72.02
	73.0	\checkmark	2/12	70.28
Tiny-Inet	93.8		0/12	67.58
	33.0	\checkmark	3/12	66.58
	98.4		0/12	63.46
	30.4	\checkmark	6/12	62.30

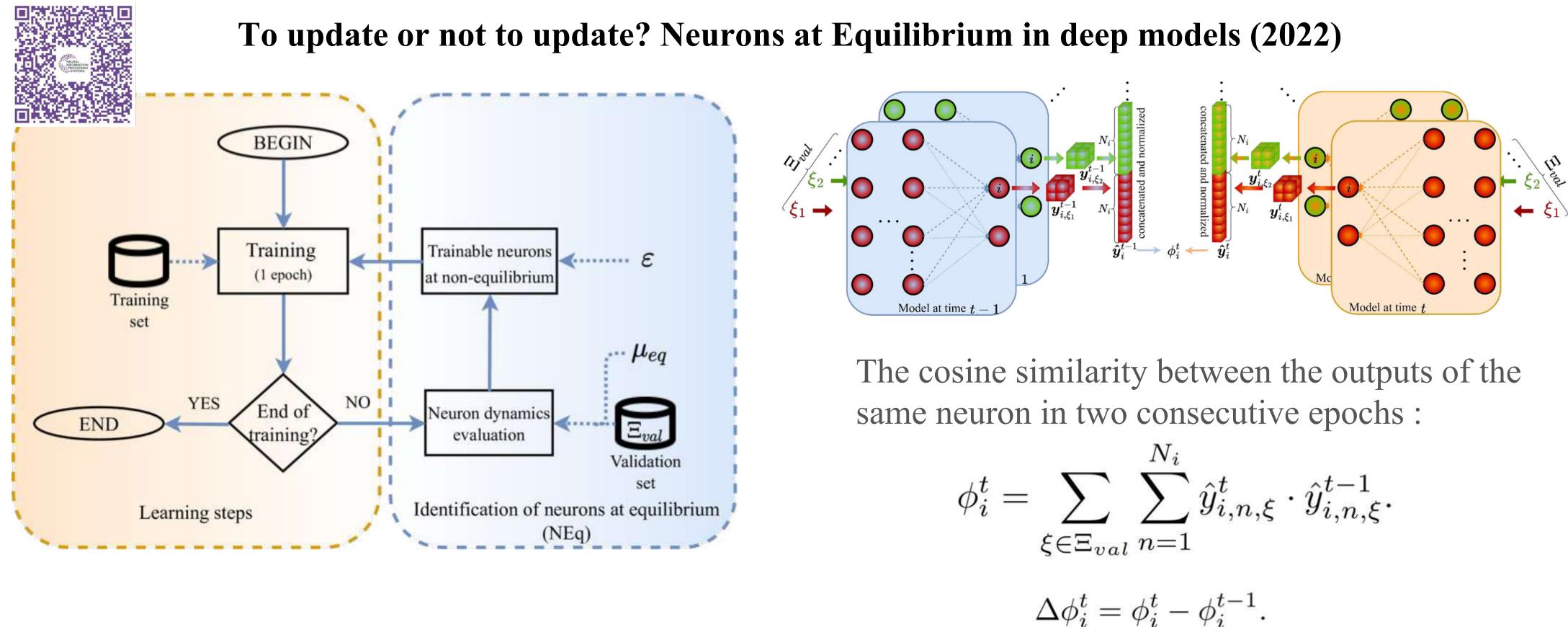
SCoTTi: Save Computation at TrainingTime



Save Computation at Training

TELECOM Paris

SCoTTi: Save Computation at TrainingTime



The velocity: $v_{\Delta\phi_i}^t = \Delta\phi_i^t - \mu_{eq}v_{\Delta\phi_i}^{t-1}$

The condition for a frozen state : $|v_{\Delta\phi}^t| < \varepsilon$

Save Computation at Training

IP PARIS

TELECOM Paris

SCoTTi: Save Computation at TrainingTime

GD: The Ultimate Optimizer (2022)

- Proposed a software implementation.

$$w_{i+1} = w_i - \alpha \frac{\partial f(w_i)}{\partial w_i}$$

If α is too small, the optimizer runs slowly, whereas if α is too large, the optimizer fails to converge

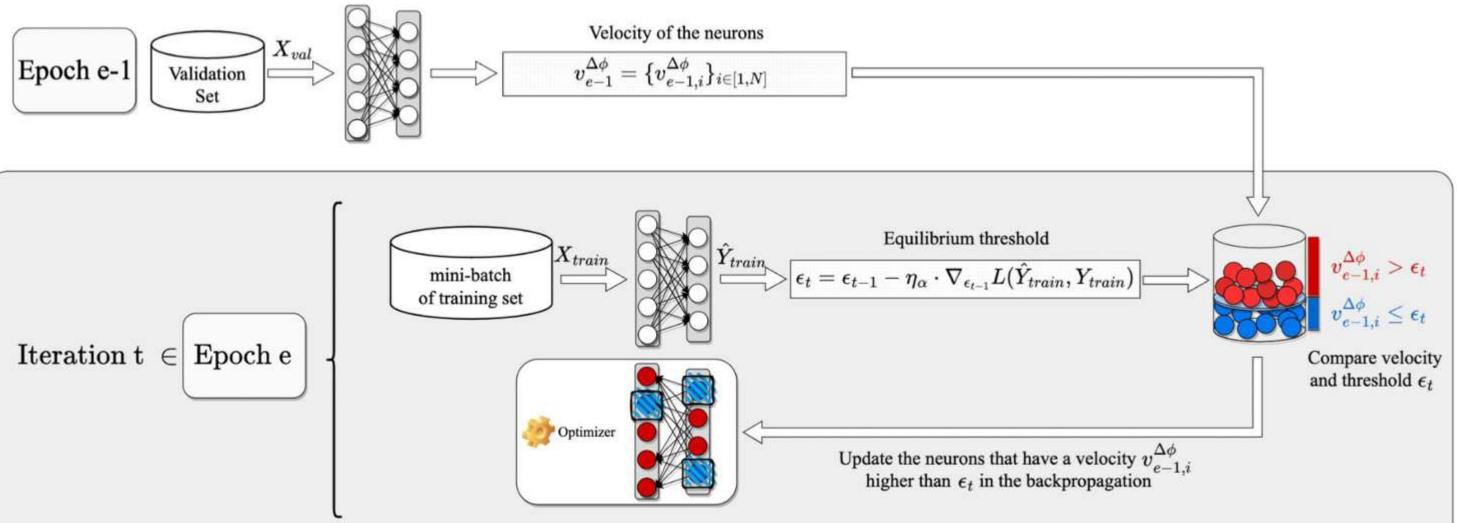
• Work started from Almeida et al. (1999) and Baydin et al. (2018). • Rule for hyper-gradients (eg. dynamic learning rate).

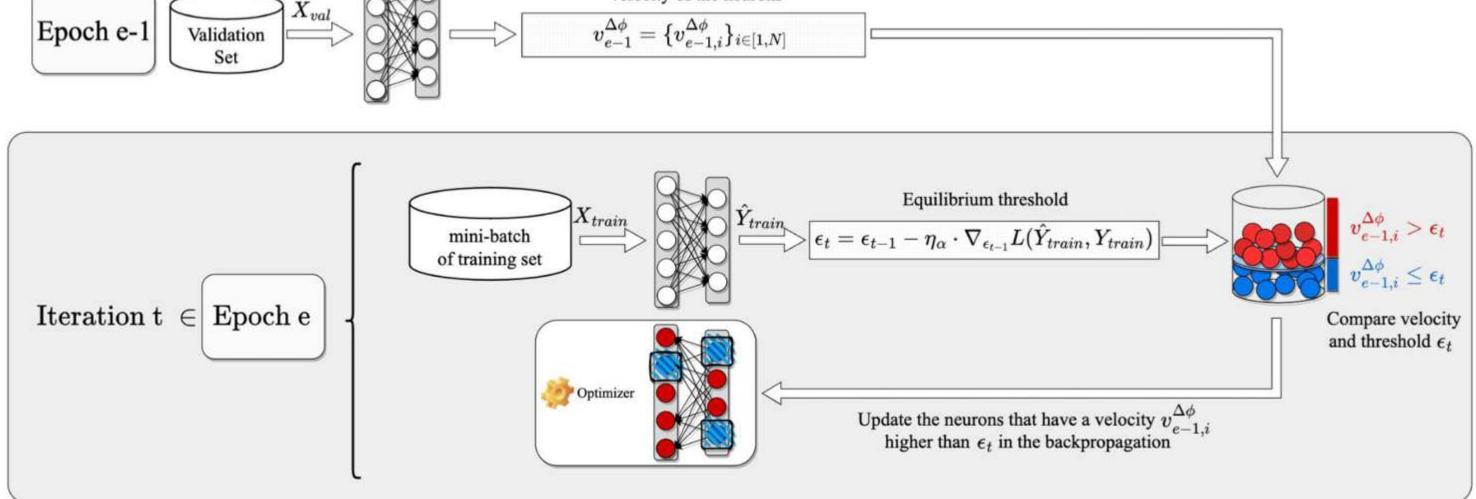
$$w_{i+1} = w_i - \alpha_{i+1} \frac{\partial f(w_i)}{\partial w_i}$$

$$\alpha_{i+1} = \alpha_i - \kappa \frac{\partial f(w_i)}{\partial \alpha_i}$$
werv
$$\frac{\partial f(w_i)}{\partial \alpha_i} = \frac{\partial f(w_i)}{\partial w_i} \cdot \frac{\partial w_i}{\partial \alpha_i} = \frac{\partial f(w_i)}{\partial w_i} \cdot \frac{\partial \left(w_{i-1} - \alpha_i \frac{\partial f(w_i)}{\partial w_i}}{\partial \alpha_i}\right)}{\frac{\partial f(w_i)}{\partial w_i} \cdot \left(-\frac{\partial f(w_{i-1})}{\partial w_{i-1}}\right)}$$

Save Computation at Training

SCoTTi: Save Computation at TrainingTime





- The velocity is however evaluated once after every epoch, on the validation set.
- converge faster to their final state.

Z. Li, E. Tartaglione and V. T. Nguyen "SCoTTi: Save Computation at Training Time with an adaptive framework," in Workshop on Resource Efficient Deep Learning for Computer Vision, ICCV Workshop 2023.

TELECOM Paris

彩藝術

IP PARIS

Together with the learning rate, we also learn the threshold ε which varies at the iteration scale. As the learning rate is also optimized, the lower it becomes the higher ε becomes, as the neurons will

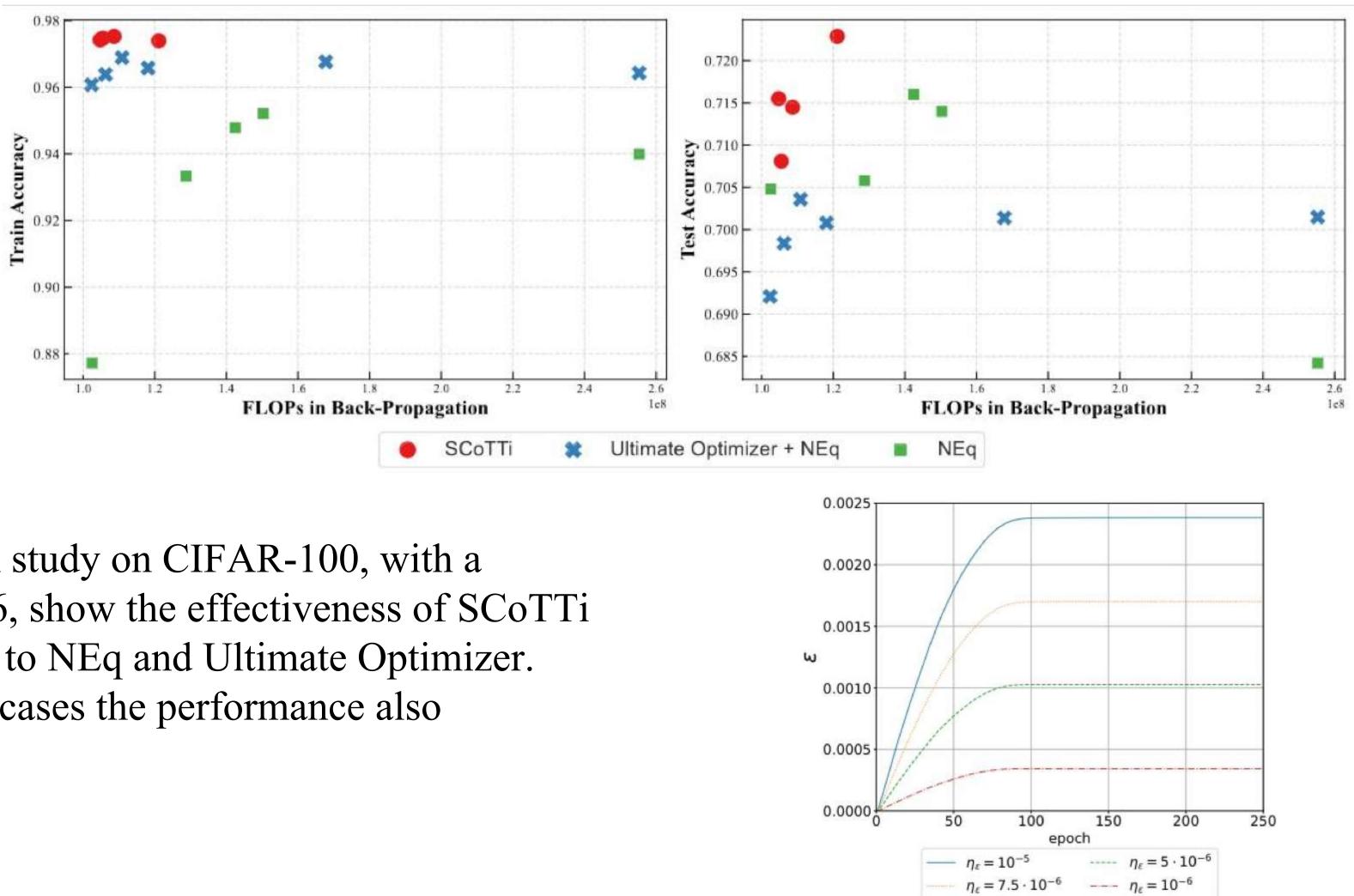
Save Computation at Training

Archit	Dataset
VGG-1	CIFAR-10 [39]
Swin-1	curric to (cor)
ResNet-	
ResNet-	CIFAR-100 [39]
ResNet-	Clipart [43]
ResNet-	Painting [43]
MobileNe	Finy ImageNet [43]

Experiments

hitecture G-16 [40] h-T* [41] et-32 [42]		Optimization Approach	FLOP	(T)	
hitecture	NEq [16]	Ultimate optim. [15]	Learned ϵ	FLOPs saved	Top-1
				00.00%	88.54%
	~			37.41%	89.86%
G-16 [40]		\checkmark		00.00%	92.76%
	~	\checkmark		30.98%	92.70%
	~	~	FLOPs saved 00.00% 37.41% 00.00% 00.00%	92.58%	
				00.00%	91.59%
	\checkmark			39.66%	90.96%
n-T* [41]		\checkmark		00.00%	91.65%
	~	\checkmark		48.84%	91.74%
	√	1	√	58.76%	91.77%
				00.00%	68.42%
	~			38.80%	69.97%
et-32 [42]		~		00.00%	70.06%
	5	~		59.89%	69.24%
	~	1	1	60.59%	70.43%
				00.00%	69.69%
	~			41.12%	71.40%
et-56 [42]		\checkmark		00.00%	70.15%
	~	✓		56.58%	70.36%
	~	✓	√	58.97%	71.55%
				00.00%	73.21%
	~			38.06%	72.19%
et-18 [42]		✓		00.00%	73.01%
	~	\checkmark		49.33%	72.60%
	~	√	√	53.86%	73.21%
				00.00%	64.51%
	~			27.94%	62.14%
et-18 [42]		~		00.00%	60.82%
	~	\checkmark		77.34%	63.46%
	~	✓	1	76.92%	65.44%
				00.00%	55.69%
	~			53.28%	56.40%
Net-v2* [44]		\checkmark		00.00%	60.02%
	~	\checkmark		80.83%	60.53%
	1	1	1	86.44%	60.68%

Save Computation at Training

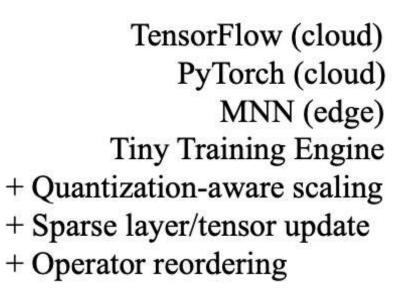


• Ablation study on CIFAR-100, with a ResNet-56, show the effectiveness of SCoTTi compared to NEq and Ultimate Optimizer. • In some cases the performance also improves.

Experiments

Toward AI Training on the Edge

On-Device Training Under 256KB Memory (2022)



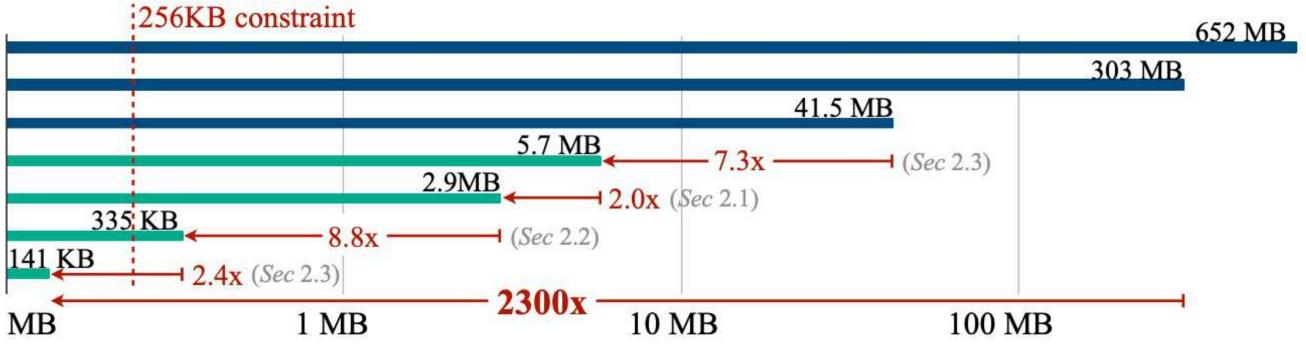


Figure 1. Algorithm and system co-design reduces the training memory from 303MB (PyTorch) to 141KB with the same transfer learning accuracy, leading to $2300 \times$ reduction. The numbers are measured with MobilenetV2w0.35 [60], batch size 1 and resolution 128×128 . It can be deployed to a microcontroller with 256KB SRAM.

TinyEngine: A Memory-Efficient Inference Library

- Eliminating runtime overheads,
- Memory scheduling
- In-place depth-wise convolution

Sparse Layer/tensor update

• Static sparse update schemes thanks to an offline evolutionary search

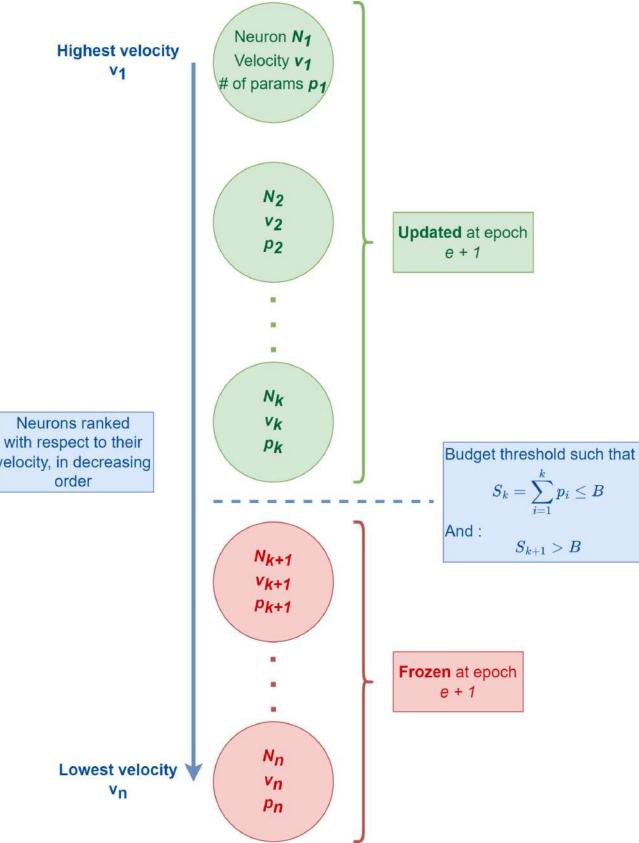
On-Device Training

Velocity-Based Neuron Selection

- 1. Neuron outputs at each epoch on a fixed validation subset to determine their "velocity".
- 2. NEq consists in the progressive freezing of neurons as their velocity falls below a threshold ε .
- 3. We update the k fastest neurons while staying within a specified parameter budget.

=> This approach maintains high test accuracies and prevents update costs from exceeding a predetermined memory limit.

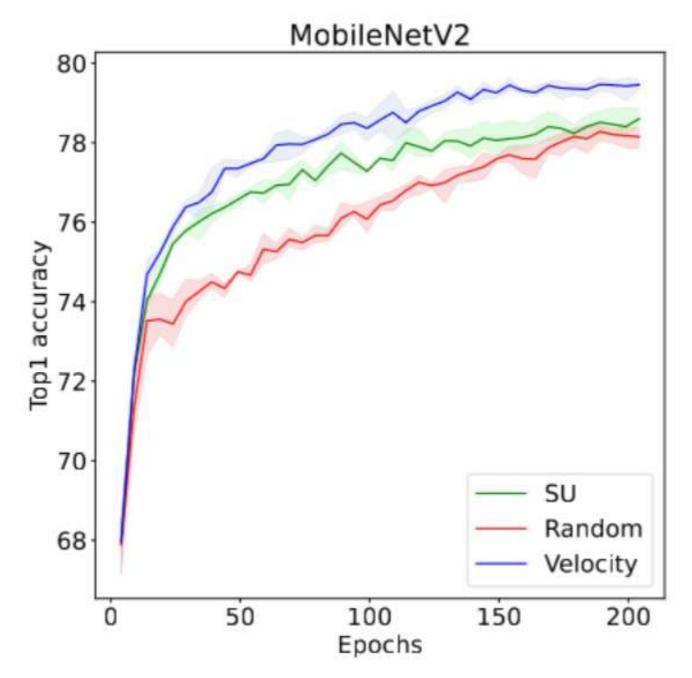
On-Device Training



Selection of neurons to update given a network of *n* neurons and a budget *B*

Toward AI Training on the Edge

Velocity-Based Neuron Selection



MobileNetV2 testing accuracy through training on C100, with only 8.8% of the network's parameters updated

On-Device Training

% of network updated	\mathcal{B}_{\max}^w	Method	Cifar 10	Cifar 100	vww
8.8		Sparse Update	$95.13{\pm}0.21$	$78.60{\pm}0.22$	90.66±0.29
	192 311	Velocity	95.25±0.29	79.46±0.12	91.40±0.16
		Random	94.41±0.13	$78.15{\pm}0.26$	90.29±0.05
		Sparse Update	95.30±0.10	$78.84{\pm}0.20$	91.29±0.18
21.2	464 639	Velocity	95.36±0.07	$79.67{\pm}0.28$	91.48±0.39
		Random	94.61±0.16	$78.28{\pm}0.31$	90.51±0.25
30.8		Sparse Update	95.16±0.29	$78.62{\pm}0.18$	91.46±0.21
	675 540	Velocity	95.49±0.16	79.43±0.19	91.57±0.20
		Random	94.57±0.20	$78.58{\pm}0.11$	90.58±0.10

Pretrained MobileNetV2 final top1 test accuracies (for the first epoch the neurons to update are given by the associated SU scheme)

Toward AI Training on the Edge

Velocity-Based Neuron Selection

% of network updated	\mathcal{B}_{\max}^w	Method	Flowers	Food	Pets	CUB
		Sparse Update	93.77±0.38	77.81±0.26	85.82±0.22	67.82±0.29
8.8	192 311	Velocity	93.03±0.47	79.16±0.16	85.50±0.17	67.52±0.0
		Random	92.19±0.17	77.78 ± 0.00	$85.50{\pm}0.28$	65.56±0.4
	464 639	Sparse Update	94.28±0.36	78.26 ± 0.07	84.63±0.15	68.04±0.2
21.2		Velocity	93.34±0.08	79.63±0.17	84.91±0.82	68.23±0.6
		Random	92.43±0.10	$78.26{\pm}0.07$	84.73±0.29	66.30±0.1
		Sparse Update	94.22±0.14	$78.03{\pm}0.08$	$84.38{\pm}0.28$	67.59±0.2
30.8	675 540	Velocity	93.77±0.26	79.56±0.24	84.44±0.50	68.26±0.3
		Random	92.83±0.03	79.00±0.11	84.39±0.42	66.17±0.4

Pretrained MobileNetV2 final top1 test accuracies (for the first epoch the neurons to update are given by the associated SU scheme)

On-Device Training

Toward AI Training on the Edge

IP PARIS

Final top1 test accuracies (for the first epoch the neurons to update are randomly selected)

Model	\mathcal{B}_{\max}^w	Method	Cifar 10	Cifar 100	vww	Flowers	Food	Pets	CUB
		SU	94.88±0.12	$78.15{\pm}0.13$	$90.75{\pm}0.17$	$92.70{\pm}0.06$	$75.02{\pm}0.23$	86.93±0.22	66.48±0.4
	192 311	Velocity	$95.35{\pm}0.35$	79.41±0.21	90.95±0.16	92.98±0.29	$79.18{\pm}0.07$	85.56±0.47	67.92±0.
		Random	94.46±0.16	$78.03{\pm}0.21$	90.20±0.13	92.11±0.15	77.57±0.16	85.16±0.07	65.96±0.
		SU	$95.00{\pm}0.08$	$78.69{\pm}0.19$	90.80±0.24	92.86±0.33	$76.50{\pm}0.23$	86.64±0.27	67.81±0
MbV2	464 639	Velocity	95.49±0.02	$79.52{\pm}0.11$	91.41±0.19	$93.32{\pm}0.15$	79.67±0.19	84.36±0.76	68.19±0
WI0 V 2		Random	94.51±0.05	$78.49{\pm}0.19$	90.55±0.24	92.64±0.32	$78.48{\pm}0.17$	$84.92{\pm}0.21$	66.18±0
		SU	95.18±0.17	79.03±0.30	91.03±0.16	93.08±0.09	$77.19{\pm}0.07$	86.42±0.45	67.72±0
	675 540	Velocity	95.57±0.11	79.21±0.37	$91.72{\pm}0.15$	93.33±0.31	79.68±0.16	84.37±0.28	68.19±0
		Random	94.57±0.09	78.41±0.29	$90.35{\pm}0.01$	$92.88{\pm}0.21$	$78.90{\pm}0.06$	$84.39{\pm}0.41$	66.36±0
	2 189 760	Baseline	95.93±0.14	79.83±0.29	91.80±0.03	94.02±0.03	80.63±0.10	$82.82{\pm}0.18$	69.24±0
	980 715	Velocity	95.51±0.10	78.77±0.41	88.78±0.51	90.78±0.24	$75.09{\pm}0.13$	82.82±0.30	63.64±0
		Random	$95.20{\pm}0.20$	$77.98{\pm}0.38$	88.33±0.45	$89.39{\pm}0.47$	$74.57{\pm}0.15$	$79.49{\pm}0.51$	60.93±0
	2 369 480	Velocity	95.36±0.15	79.12±0.12	89.16±0.31	91.02±0.17	75.72±0.23	82.01±0.60	63.84±0
Resnet18		Random	95.68±0.10	$78.28{\pm}0.22$	89.21±0.23	89.53±0.17	$75.17{\pm}0.12$	79.40±0.34	61.42±0
	3 444 987	Velocity	$95.58{\pm}0.21$	$78.95{\pm}0.13$	89.17±0.33	90.76±0.15	$75.83{\pm}0.12$	$81.45{\pm}0.63$	63.59±0
		Random	95.80±0.09	$78.52{\pm}0.18$	$88.92{\pm}0.19$	$89.66{\pm}0.30$	$75.28{\pm}0.12$	$79.28{\pm}0.34$	61.45±0
	11 166 912	Baseline	96.2±0.13	$78.86{\pm}0.08$	89.78±0.24	$90.14{\pm}0.26$	$76.32{\pm}0.08$	79.76±0.63	60.97±0
	2 059 888 — R 4 976 842 —	Velocity	97.10±0.07	82.94±0.35	93.04±0.15	$93.65{\pm}0.08$	$81.10{\pm}0.05$	90.11±0.25	73.73±0
Resnet50		Random	$96.80{\pm}0.06$	$81.46{\pm}0.11$	92.13±0.33	94.04±0.18	$80.68{\pm}0.18$	$88.92{\pm}0.18$	72.79±0
		Velocity	97.12±0.09	$82.79{\pm}0.40$	93.37±0.14	$94.84{\pm}0.08$	$81.62{\pm}0.17$	89.42±0.25	73.55±0
		Random	$96.97{\pm}0.08$	$82.04{\pm}0.11$	$92.59{\pm}0.20$	$94.23{\pm}0.22$	$81.52{\pm}0.11$	88.46±0.07	72.40±0
		Velocity	$97.07{\pm}0.08$	$82.45{\pm}0.18$	93.21±0.14	95.03±0.18	81.76±0.06	88.97±0.60	73.54±0
	7 235 830	Random	97.01±0.01	82.27±0.29	$92.59{\pm}0.21$	$94.54{\pm}0.15$	81.88±0.29	88.18±0.63	72.40±0

On-Device Training

Conclusions and Perspectives

- AI compression for inference are possible because of overparameterization of the DNN, and depth reduction is proposed with Entropy Guided Pruning
- Saving computation at training is necessary because of the enormous computational resources required for backpropagation.
- Training on the Edge : it is not necessary to update all the weights all the time
 - Hardware Aware Neural Architecture Search (real life application => no pretrained model)
 - Hardware Aware Model Compression (power in data movement, not computation)
 - Optimal Gradient Pruning ()
 - Training on the Edge : Taking into account activation in constrained memory budget

Acknowledgements

Zhu Liao, Ziyu Li, Ael Quelennec, Pavlo Mozharovskyi and Enzo Tartaglione

The research leading to these results has received funding from the projects titled "PC2-NF-NAI" and "PC6-FITNESS" in the frame of the program "PEPR 5G et Reseaux du futur", and the European project "ENFIELD".

