
1/71

All You Wanted to Know
About Quantum Programming

Without Daring to Ask

Benôıt Valiron, CentraleSupélec/LMF

October 17th, 2023

Telecom Paris, Palaiseau

2/71

Plan

Quantum Computation

Design of Quantum Programming Languages

Conclusion

3/71

Plan

Quantum Computation
Model of Computation
Overview of Quantum Algorithms
Case Study

Design of Quantum Programming Languages

Conclusion

4/71

Plan

Quantum Computation
Model of Computation
Overview of Quantum Algorithms
Case Study

Design of Quantum Programming Languages

Conclusion

5/71

Model of Computation: Co-Processor

Riesebos, L., et al. ”Quantum Accelerated Computer Architectures.”

Proc. IEEE International Symposium on Circuits and Systems (ISCAS), 2019.

6/71

Model of computation: Co-Processor

From 2018 : https://www.bcg.com/publications/2018/next-decade-quantum-computing-how-play

7/71

Model of Computation: Co-Processor

NISQ era

▶ Noisy Intermediate Scale Quantum

▶ Small-to-medium memory sizes, noisy

▶ Tradeoffs: Number of Qubit, Noise/Fidelity, Connectivity.

▶ Challenge: Emulation! (with Tensor Network, etc)

LSQ era

▶ Large-Scale Quantum

▶ Stabilized, logical qubits

▶ Tradeoffs: Error Correction, Layout, Compilation

▶ Challenges: Hardware!

8/71

Model of Computation: Co-Processor

Roadmap from 2022

9/71

Model of Computation: Co-Processor

What COULD quantum algorithms be good for?
▶ factoring

▶ for breaking modern cryptography

▶ simulating quantum systems
▶ for more efficient molecule distillation procedure

▶ solving linear systems
▶ for high-performance computing

▶ solving optimization problems
▶ for big learning

▶ . . . more than 300 algorithms:
http://math.nist.gov/quantum/zoo/

10/71

Model of Computation: Co-Processor

Dichotomy between

▶ Quantum algorithms as theoretical tools for complexity
analysis

▶ Quantum algorithms as practical tools for concrete problems

Challenges, assuming that a physical machine is available

▶ Designing the right computational model

▶ Moving from mathematical representation to code

▶ Resource estimation, optimization

▶ Compilation and low-level representation

▶ Debugging/unit testing hard : code analysis and verification

11/71

Model of Computation: Co-Processor

From 2018 : https://www.bcg.com/publications/2018/next-decade-quantum-computing-how-play

12/71

Model of Computation: Quantum Circuit

12/71

Model of Computation: Quantum Circuit

The program lives here

12/71

Model of Computation: Quantum Circuit

This only holds the quantum memory

12/71

Model of Computation: Quantum Circuit

Series of instructions/feedbacks

13/71

Model of Computation: Quantum Circuit

▶ Sequential stream of local instructions

▶ Updating the memory: Reversible, unitary operations

▶ Reading the memory: probabilistic, destructive measures

Input

 0

H


Output

No “quantum loop” or “conditional escape”.

14/71

Model of Computation: Quantum Memory

A quantum register with n quantum bits is a complex combination
of strings of n bits in a Hilbert space. E.g. for n = 3:

−1
2 · |0 0 0⟩

+ 1
2 · |0 0 1⟩

+ i
2 · |1 1 0⟩

− i
2 · |1 1 1⟩

with a norm condition.

The state of an n-qubit register lives in Hn ≜ C2n .
→ vectors of dimension 2n.
→ basis elements: bitstrings of size n.

15/71

Model of Computation: Quantum Memory

The joint state of two quantum registers of sizes m and n lives in
the tensor product space Hm ⊗Hn.

(
1√
2

|0 0⟩
+ i√

2
|1 1⟩

)
⊗


1√
2

|0 0 1⟩
+ i√

2
|1 0 0⟩

+ i√
2

|0 1 0⟩



Hm ⊗Hn is of dimension 2m × 2n.

15/71

Model of Computation: Quantum Memory

The joint state of two quantum registers of sizes m and n lives in
the tensor product space Hm ⊗Hn.

1√
2

|0 0⟩ ⊗


1√
2

|0 0 1⟩
+ i√

2
|1 0 0⟩

+ i√
2

|0 1 0⟩


+ i√

2
|1 1⟩ ⊗


1√
2

|0 0 1⟩
+ i√

2
|1 0 0⟩

+ i√
2

|0 1 0⟩



Hm ⊗Hn is of dimension 2m × 2n.

15/71

Model of Computation: Quantum Memory

The joint state of two quantum registers of sizes m and n lives in
the tensor product space Hm ⊗Hn.

1
2 |0 0⟩ ⊗ |0 0 1⟩
i
2 |0 0⟩ ⊗ |1 0 0⟩
i
2 |0 0⟩ ⊗ |0 1 0⟩

+ i
2 |1 1⟩ ⊗ |0 0 1⟩
−1
2 |1 1⟩ ⊗ |1 0 0⟩
−1
2 |1 1⟩ ⊗ |0 1 0⟩

Hm ⊗Hn is of dimension 2m × 2n.

15/71

Model of Computation: Quantum Memory

The joint state of two quantum registers of sizes m and n lives in
the tensor product space Hm ⊗Hn.

1
2 |0 0 0 0 1⟩
i
2 |0 0 1 0 0⟩
i
2 |0 0 0 1 0⟩

+ i
2 |1 1 0 0 1⟩
−1
2 |1 1 1 0 0⟩
−1
2 |1 1 0 1 0⟩

Hm ⊗Hn is of dimension 2m × 2n.

15/71

Model of Computation: Quantum Memory

The joint state of two quantum registers of sizes m and n lives in
the tensor product space Hm ⊗Hn.

1
2 |0 0 0 0 1⟩
i
2 |0 0 1 0 0⟩
i
2 |0 0 0 1 0⟩

+ i
2 |1 1 0 0 1⟩
−1
2 |1 1 1 0 0⟩
−1
2 |1 1 0 1 0⟩

Hm ⊗Hn is of dimension 2m × 2n.

16/71

Model of computation: Quantum Memory

Takeaway

▶ Classical data in superposition.

▶ Internal updates are reversible and local.

▶ No-cloning theorem: quantum information cannot be copied

▶ Probablistic, destructive reading

▶ No control flow in the quantum co-processor

▶ Some parallelism thanks to data superposition

17/71

Plan

Quantum Computation
Model of Computation
Overview of Quantum Algorithms
Case Study

Design of Quantum Programming Languages

Conclusion

18/71

Structure of Quantum Algorithms

Input values

Parameters
to the problem

Static circuit

Initializing
quantum
memory

Executing
the circuit Measure

Output valuesPost-processing

Answer to
the problem

New input values

Simple case

Probabilsitically

19/71

Structure of Quantum Algorithms

Simple scheme

General scheme

▶ Quantum circuits ̸= hardware design

▶ Hybrid classical/quantum computation

20/71

Internal of current quantum algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.
▶ Quantum Fourier Transform.

Assuming ω = 0.xy, we want

(e2πiω)0 · 00
+ (e2πiω)1 · 01
+ (e2πiω)2 · 10
+ (e2πiω)3 · 11

7−→ 1 · xy

21/71

Internal of current quantum algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.
▶ Quantum Fourier Transform.
▶ Amplitude amplification.

Qubit 3 in state 1 means good.

α0 · 000
+ α1 · 011
+ α2 · 100
+ α3 · 110

7−→

α0 · 000
+ α1 · 011
+ α2 · 100
+ α3 · 110

22/71

Internal of current quantum algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.
▶ Quantum Fourier Transform.
▶ Amplitude amplification.
▶ Quantum walk.

0 // 1 // 2 // 3 // 4 // 5 // 6 // 7

��
15

OO

14oo 13oo 12oo 11oo 10oo 9oo 8oo

23/71

Internal of current quantum algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.
▶ Quantum Fourier Transform.
▶ Amplitude amplification.
▶ Quantum walk.

After 5 steps of a probabilistic walk:

OO

//
0 1 2 3 4 5 6

0

0.5

24/71

Internal of current quantum algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.
▶ Quantum Fourier Transform.
▶ Amplitude amplification.
▶ Quantum walk.

After 5 steps of a quantum walk:

OO

//
0 1 2 3 4 5 6

0

0.5

25/71

Internal of current quantum algorithms

The techniques used to described quantum algorithms are diverse.

2. Oracles.
▶ Take a classical function f : Booln → Boolm.
▶ Construct

f : Booln+m −→ Booln+m

(x , y) 7−→ (x , y ⊕ f (x))

▶ Build the unitary Uf acting on n +m qubits computing f .

26/71

Internal of current quantum algorithms

The techniques used to described quantum algorithms are diverse.

3. Blocks of loosely-defined low-level circuits.

This is not a formal specification!

27/71

Internal of current quantum algorithms

The techniques used to described quantum algorithms are diverse.

4. High-level operations on circuit:
▶ Circuit inversion.

(the circuit needs to be reversible. . .)
▶ Repetition of the same circuit.

(needs to have the same input and output arity. . .)
▶ Controlling of circuits

28/71

Internal of current quantum algorithms

The techniques used to described quantum algorithms are diverse.

5. Classical processing.
▶ Generating the circuit. . .
▶ Computing the input to the circuit.
▶ Processing classical feedback in the middle of the computation.
▶ Analyzing the final answer (and possibly starting over).

29/71

Plan

Quantum Computation
Model of Computation
Overview of Quantum Algorithms
Case Study

Design of Quantum Programming Languages

Conclusion

30/71

Case study: QLS algorithm

Considering a vector b⃗ and the system

A · x⃗ = b⃗,

compute the value of ⟨ x⃗ | r⃗ ⟩ for some vector r⃗ .

Practical situation: the matrix A corresponds to the finite-element
approximation of the scattering problem:

arXiv:1505.06552

31/71

Case study: QLS algorithm

Three oracles:

▶ for r⃗ and for b⃗: input an index, output (the representation of)
a complex number

▶ for A: input two indexes, output also a complex number

Many quantum primitives

▶ Amplitude estimation

▶ Phase estimation

▶ Amplitude amplification

▶ Hamiltonian simulation

32/71

Case study: QLS algorithm

▶ Yellow: Elementary gates.

▶ Red: Oracles.

▶ Blue: QFT’s.

▶ Black: Subroutines.

▶ Parameters:
Dimensions of the space;
Precision for each of the vectors;
Allowed error;
Various parameters for A. . .
In total, 19 parameters.

33/71

Case study: QLS algorithm

Oracle R is given by the function

calcRweights y nx ny lx ly k theta phi =
let (xc’,yc’) = edgetoxy y nx ny in
let xc = (xc’-1.0)*lx - ((fromIntegral nx)-1.0)*lx/2.0 in
let yc = (yc’-1.0)*ly - ((fromIntegral ny)-1.0)*ly/2.0 in
let (xg,yg) = itoxy y nx ny in
if (xg == nx) then

let i = (mkPolar ly (k*xc*(cos phi)))*(mkPolar 1.0 (k*yc*(sin phi)))*
((sinc (k*ly*(sin phi)/2.0)) :+ 0.0) in

let r = (cos(phi) :+ k*lx)*((cos (theta - phi))/lx :+ 0.0) in i * r
else if (xg==2*nx-1) then

let i = (mkPolar ly (k*xc*cos(phi)))*(mkPolar 1.0 (k*yc*sin(phi)))*
((sinc (k*ly*sin(phi)/2.0)) :+ 0.0) in

let r = (cos(phi) :+ (- k*lx))*((cos (theta - phi))/lx :+ 0.0) in i * r
else if ((yg==1) && (xg<nx)) then

let i = (mkPolar lx (k*yc*sin(phi)))*(mkPolar 1.0 (k*xc*cos(phi)))*
((sinc (k*lx*(cos phi)/2.0)) :+ 0.0) in

let r = ((- sin phi) :+ k*ly)*((cos(theta - phi))/ly :+ 0.0) in i * r
else if ((yg==ny) && (xg<nx)) then

let i = (mkPolar lx (k*yc*sin(phi)))*(mkPolar 1.0 (k*xc*cos(phi)))*
((sinc (k*lx*(cos phi)/2.0)) :+ 0.0) in

let r = ((- sin phi) :+ (- k*ly))*((cos(theta - phi)/ly) :+ 0.0) in i * r
else 0.0 :+ 0.0

34/71

Case study: circuit snippets

The algorithms create circuits whose sizes and shapes depend on
the parameters. E.g. the size of the input register:

(QFT)

35/71

Case study: circuit snippets

The algorithms create circuits whose sizes and shapes depend on
the parameters. E.g. the size of the input register:

(diffusion step in BWT)

36/71

Case study: circuit snippets

The algorithms create circuits whose sizes and shapes depend on
the parameters. E.g. the size of the input register:

(piece of one subroutine of QLS)

37/71

Case study: circuit snippets

The algorithms create circuits whose sizes and shapes depend on
the parameters. E.g. the size of the input register:

(the subroutine Ug)

38/71

Case study: circuit snippets

The algorithms create circuits whose sizes and shapes depend on
the parameters. E.g. the size of the input register:

(the subroutine Ub)

39/71

Plan

Quantum Computation

Design of Quantum Programming Languages
Accessing Qubits
Handling Parametricity

Conclusion

40/71

Lessons learned

▶ Circuit construction
▶ Procedural: Instruction-based, one line at a time
▶ Declarative: Circuit combinators

▶ Inversion
▶ Repetition
▶ Control
▶ Computation/uncomputation

▶ Circuits as inputs to other circuits

▶ Regularity with respect to the size of the input

▶ Distinction parameter / input

▶ Need for automation for oracle generation

41/71

Plan

Quantum Computation

Design of Quantum Programming Languages
Accessing Qubits
Handling Parametricity

Conclusion

42/71

Programming framework

Two approaches
▶ Circuit as a record

▶ One type circuit
▶ Qubits ≡ wire numbers
▶ Native: vertical/horizontal concatenation, gate addition

▶ Circuit as a function
▶ Qubits ≡ first-order objects
▶ Input wires ≡ function input
▶ Output wires ≡ function output

43/71

Circuits as Records

Simplest model: an object holding all of the circuit structure

▶ Classical wires

▶ Quantum wires

▶ List of gates (or directed acyclic graph)

▶ This is for instance QisKit/QASM model

In this system

▶ Static circuit
▶ No high-level hybrid interaction: sequence

1. circuit generation
2. circuit evaluation
3. measure
4. classical post-processing
5. back to (1)

44/71

Circuits as Records

Procedural construction (QisKit)

q = QuantumRegister(5)
c = ClassicalRegister(1)
circ = QuantumCircuit(q,c)

circ.h(q[0])
for i in range(1,5):

circ.cx(q[0], q[i])
circ.meas(q[4],c[0])

▶ Static ID For registers

▶ Wires are numbers

▶ Gate ≡ instruction

▶ Classical control: Circuit building

▶ Explicit “run” of circuit

Combinators: return a record circuit

▶ circ.control(4)

▶ circ.inverse()

▶ circ.append(other-circuit)

45/71

Circuits as Functions

A function
a -> Circ b

▶ Inputs something of type a

▶ Outputs something of type b

▶ As a side-effect, generates a circuit snippet.

Or

▶ Inputs a value of type a

▶ Outputs a computation of type b

46/71

Circuits as Functions

The circuit

0

H

can be typed with

Qubit -> Circ (Qubit,Qubit)

▶ Inputs one qubit

▶ Outputs a pair of qubits

▶ Spits out some gates when evaluated

The gates are however encapsulated in the function

47/71

Circuits as Functions

Representing circuits (Quipper)

myCircuit :: Qubit -> Circ (Qubit, Qubit)

myCircuit q = do
 ...
 ...
 return (x,y)

The two output wires

The name of the input wire
Start a procedural sequence

Name of circuit Input: one wire Indeed a circuit Two output wires

48/71

Circuits as Functions

Procedural presentation of circuits:

prog :: Qubit -> Circ (Qubit,Qubit)

prog q = do

hadamard_at q

r <- qinit False

qnot_at r ‘controlled‘ q

return (q,r)

H

49/71

Circuits as Functions

Procedural presentation of circuits:

prog :: Qubit -> Circ (Qubit,Qubit)

prog q = do

hadamard_at q

r <- qinit False

qnot_at r ‘controlled‘ q

return (q,r)

H

0

50/71

Circuits as Functions

Procedural presentation of circuits:

prog :: Qubit -> Circ (Qubit,Qubit)

prog q = do

hadamard_at q

r <- qinit False

qnot_at r ‘controlled‘ q

return (q,r)

H

0

51/71

Circuits as Functions

Procedural presentation of circuits:

prog :: Qubit -> Circ (Qubit,Qubit)

prog q = do

hadamard_at q

r <- qinit False

qnot_at r ‘controlled‘ q

return (q,r)

H

0

52/71

Circuits as Functions

Procedural presentation of circuits:

prog :: Qubit -> Circ (Qubit,Qubit)

prog q = do

hadamard_at q

r <- qinit False

qnot_at r ‘controlled‘ q

return (q,r)

H

0

53/71

Circuits as Functions

0

H

import Quipper

circ ::
Qubit -> Circ (Qubit,Qubit)

circ x = do
y <- qinit False
hadamard_at x
qnot_at y ‘controlled‘ x
return (x,y)

▶ Qubits ≡ first-class variable

▶ Circuit ≡ function

▶ Wires ≡ inputs and outputs

▶ Mix classical/quantum

54/71

Circuits as Functions

Wires do not have “fixed” location

circ2 :: Qubit -> Circ ()
circ2 x = do

(x1,x2) <- circ x
(y1,y2) <- circ x1
(z1,z2) <- circ x2
return ()

x

0

H
x1

x2

0

H
y1

y2

0

H
z1

z2

▶ Qubit ̸≡ Wire number

▶ Circuits as functions: can be applied

▶ More expressive types

55/71

Circuit Combinators

Controls

controlled :: ControlSource b => Circ a -> b -> Circ a

▶ Input: Computation generating a circuit C

▶ Input: Something that can be controlled (e.g. Qubit)

▶ Output: Computation generating the controlled circuit C

Example
prog :: (Qubit,Qubit) -> Circ (Qubit,Qubit)

prog (p,q) = do

qnot_at p

return (p,q)

56/71

Circuit Combinators

Controls

controlled :: ControlSource b => Circ a -> b -> Circ a

▶ Input: Computation generating a circuit C

▶ Input: Something that can be controlled (e.g. Qubit)

▶ Output: Computation generating the controlled circuit C

Example
prog :: (Qubit,Qubit) -> Circ (Qubit,Qubit)

prog (p,q) = do

controlled (qnot_at p) q

return (p,q)

57/71

Circuit Combinators

Controls

controlled :: ControlSource b => Circ a -> b -> Circ a

▶ Input: Computation generating a circuit C

▶ Input: Something that can be controlled (e.g. Qubit)

▶ Output: Computation generating the controlled circuit C

Example
prog :: (Qubit,Qubit) -> Circ (Qubit,Qubit)

prog (p,q) = do

qnot_at p ‘controlled‘ q

return (p,q)

with infix notation

58/71

Circuit Combinators

Controls

controlled :: ControlSource b => Circ a -> b -> Circ a

It works on any (reversible) circuit

prog :: (Qubit,Qubit) -> Circ (Qubit,Qubit)

prog (p,q) = do

hadamard_at p

hadamard_at q

qnot_at p ‘controlled‘ q

return (p,q)

H

H

59/71

Circuit Combinators

Controls

controlled :: ControlSource b => Circ a -> b -> Circ a

It works on any (reversible) circuit
prog :: (Qubit,Qubit) -> Circ (Qubit,Qubit)

...

prog2 :: (Qubit,Qubit,Qubit) -> Circ ()

prog2 (p,q,r) = do

prog (p,q)

prog (q,r)

prog (p,r)

return ()

H

H H

H

H

H

60/71

Circuit Combinators

Controls

controlled :: ControlSource b => Circ a -> b -> Circ a

It works on any (reversible) circuit
prog :: (Qubit,Qubit) -> Circ (Qubit,Qubit)

...

prog2 :: (Qubit,Qubit,Qubit) -> Circ ()

prog2 (p,q,r) = do

prog (p,q)

prog (q,r) ‘controlled‘ p

prog (p,r)

return ()

H

H H

H

H

H

61/71

Plan

Quantum Computation

Design of Quantum Programming Languages
Accessing Qubits
Handling Parametricity

Conclusion

62/71

Families of Circuits

A program

▶ Inputs classical parameters

▶ Construct a circuit from these parameters

▶ Run the circuit

Circuits: parametrized families

63/71

Families of Circuits

Example: QFT
E

N
T

E
R

: q
ft

_l
itt

le
_e

nd
ia

n qs[0]

qs[1]
H R(2pi/4)

H

E
X

IT
: q

ft
_l

itt
le

_e
nd

ia
n qs[1]

qs[0]

63/71

Families of Circuits

Example: QFT
E

N
T

E
R

: q
ft

_l
itt

le
_e

nd
ia

n qs[0]

qs[1]

qs[2]

qs[3]
H R(2pi/4)

H

R(2pi/8)

R(2pi/4)

H

R(2pi/16)

R(2pi/8)

R(2pi/4)

H

E
X

IT
: q

ft
_l

itt
le

_e
nd

ia
n qs[3]

qs[2]

qs[1]

qs[0]

63/71

Families of Circuits

Example: QFT
E

N
T

E
R

: q
ft

_l
itt

le
_e

nd
ia

n qs[0]

qs[1]

qs[2]

qs[3]

qs[4]
H R(2pi/4)

H

R(2pi/8)

R(2pi/4)

H

R(2pi/16)

R(2pi/8)

R(2pi/4)

H

R(2pi/32)

R(2pi/16)

R(2pi/8)

R(2pi/4)

H

E
X

IT
: q

ft
_l

itt
le

_e
nd

ia
n qs[4]

qs[3]

qs[2]

qs[1]

qs[0]

64/71

Families of Circuits

With the help of lists:

myCircuit :: [Qubit] -> Circ [Qubit]

myCircuit qs = do
 ...
 ...
 return ...

The output list

The name of the input list
Start a procedural sequence

Name of circuit
Input a list of wires

Indeed a circuit Output a list of wires

65/71

Families of Circuits

List combinators, e.g.

mapM :: (a -> Circ b) -> [a] -> Circ [b]

Mixed presentation of circuits:

prog :: Qubit -> Circ (Qubit,Qubit)

prog q = do

hadamard_at q

r <- qinit False

qnot_at r ‘controlled‘ q

return (q,r)

prog2 :: [Qubit] -> Circ [(Qubit,Qubit)]

prog2 l = mapM prog l

List of size 2:

H

0

H

0

66/71

Families of Circuits

List combinators, e.g.

mapM :: (a -> Circ b) -> [a] -> Circ [b]

Mixed presentation of circuits:

prog :: Qubit -> Circ (Qubit,Qubit)

prog q = do

hadamard_at q

r <- qinit False

qnot_at r ‘controlled‘ q

return (q,r)

prog2 :: [Qubit] -> Circ [(Qubit,Qubit)]

prog2 l = mapM prog l

List of size 10:
H

0

H

0

H

0

H

0

H

0

H

0

H

0

H

0

H

0

H

0

67/71

Example: BWT

import Quipper

w :: (Qubit,Qubit) -> Circ (Qubit,Qubit)
w = named_gate "W"

toffoli :: Qubit -> (Qubit,Qubit) -> Circ Qubit
toffoli d (x,y) =

qnot d ‘controlled‘ x .==. 1 .&&. y .==. 0

eiz_at :: Qubit -> Qubit -> Circ ()
eiz_at d r =

named_gate_at "eiZ" d ‘controlled‘ r .==. 0

circ :: [(Qubit,Qubit)] -> Qubit -> Circ ()
circ ws r = do

label (unzip ws,r) (("a","b"),"r")
d <- qinit 0
mapM_ w ws
mapM_ (toffoli d) ws
eiz_at d r
mapM_ (toffoli d) (reverse ws)
mapM_ (reverse_generic w) (reverse ws)
return ()

main = print_generic EPS circ (replicate 3 (qubit,qubit)) qubit

68/71

Example: BWT

Result (3 wires):

a[0]

b[0]

a[1]

b[1]

a[2]

b[2]

r

0

W 1

W 2

W 1

W 2

W 1

W 2

eiZ

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

69/71

Example: BWT

Result (30 wires):

a[0]

b[0]

a[1]

b[1]

a[2]

b[2]

a[3]

b[3]

a[4]

b[4]

a[5]

b[5]

a[6]

b[6]

a[7]

b[7]

a[8]

b[8]

a[9]

b[9]

a[10]

b[10]

a[11]

b[11]

a[12]

b[12]

a[13]

b[13]

a[14]

b[14]

a[15]

b[15]

a[16]

b[16]

a[17]

b[17]

a[18]

b[18]

a[19]

b[19]

a[20]

b[20]

a[21]

b[21]

a[22]

b[22]

a[23]

b[23]

a[24]

b[24]

a[25]

b[25]

a[26]

b[26]

a[27]

b[27]

a[28]

b[28]

a[29]

b[29]

r

0

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

W 1

W 2

eiZ

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

W 1*

W 2*

70/71

Plan

Quantum Computation

Design of Quantum Programming Languages

Conclusion

71/71

Conclusion

Quantum Computation and Programming

▶ A lot of classical programming!

▶ Many challenges, both at high and low-level

▶ Research active to match theory with practice.

(On the other side of the N118)The QuaCS team at LMF:

▶ Design of quantum programming languages

▶ Model of quantum computation

▶ Compilation toolchain

▶ Circuit synthesis and optimization

▶ Intermediate representation

▶ Code certification

	Quantum Computation
	Model of Computation
	Overview of Quantum Algorithms
	Case Study

	Design of Quantum Programming Languages
	Accessing Qubits
	Handling Parametricity

	Conclusion

