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Context and motivation

• Machine learning: a growing trend towards pure “Data-driven” deep learning approaches

• High performances but some main limitations:

• “Knowledge” is learned (only) from data

• Complexity: overparametrized models  (> 100 millions parameters)

• Overconsumption regime 

• Non-interpretable/non-controllable
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• The main goal of my ERC project :
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Main goal : To build controllable and frugal machine listening models based on 

expressive generative modelling

My approach: to build Hybrid deep learning models, by integrating our prior 

knowledge about the nature of the processed data.

https://hi-audio.imt.fr/
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Towards Hybrid deep learning
… some prior works. 

• Physics-guided neural networks in remote sensing [1], 

• Digital communication and Image restoration [2,3]

5
[1] A. Karpatne & al. Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling, arXiv, 1710.11431, 2017.
[2] B. Lecouat & al., Fully Trainable and Interpretable Non-Local Sparse Models for Image Restoration., 2020. ⟨hal-02414291v2⟩. 
[3] N. Shlezinger, & al., "Model-Based Deep Learning," in Proceedings of the IEEE, vol. 111, no. 5, pp. 465-499, May 2023, 
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Towards Hybrid deep learning
… some prior works.

• Illustration of model-based versus data-driven inference (from [3])

6 [3] N. Shlezinger, & al., "Model-Based Deep Learning," in Proceedings of the IEEE, vol. 111, no. 5, pp. 465-499, May 2023, 



G. Richard

Content

• Context and motivation

• Towards hybrid deep learning

• Some examples in other domains

• Hybrid deep learning in audio

• Several application examples:

• Audio synthesis

• Unsupervised music source separation

• Discrete neural representation

• Discussion and conclusion

7



G. Richard

Towards Hybrid deep learning
… by integrating our prior knowledge about the nature of the processed data. 

• Towards novel models for hybrid deep learning combining parameter-efficient and interpretable 
audio models with deep neural architectures
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Towards Hybrid deep learning approaches
Examples with Hybrid deep model for Music signals

• Coupling model-based and deep learning:

G. Richard, V. Lostanlen, Y.-H. Yang, M. Müller, “Model-based Deep Learning for Music Information Research”, IEEE Signal Processing Magazine - Special 

Issue on Model-based and Data-Driven Audio Signal Processing, 2024, to appear.

Hi-Audio, Hybrid and Interpretable Deep neural audio machines, European AdG) project - https://hi-audio.imt.fr/

Example with Hybrid deep model for Music signals
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Towards Hybrid deep learning
… some prior works in Audio. 

• Signal models can be used as an advanced representation:

• An example: non-negative factorization models with CNNs for audio scene classification 

11 Lee, D.D. and Seung, H.S. (2001) Algorithms for Non-Negative Matrix Factorization. Advances in Neural Information Processing Systems, 13, 556-
562. 

Principle of Non-Negative Matrix Factorization on Audio spectrograms

Image from R. Hennequin
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Towards Hybrid deep learning
… some prior works in Audio.

• Feature learning with NMF for audio scene classification 

V. Bisot & al., "Feature Learning with Matrix Factorization Applied to Acoustic Scene Classification", ACM/IEEE Trans. on ASLP, vol. 25, no. 6, 2017 
V. Bisot & al., Leveraging deep neural networks with nonnegative representations for improved environmental sound classification IEEE International 
Workshop on Machine Learning for Signal Processing MLSP, Sep 2017, Tokyo,  12
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Towards Hybrid deep learning
… some prior works in Audio.

• Deep NMF : the concept of deep unrolling

• Classic NMF

• Minimizing a distance

• ..towards iterative update rules

13 J. L. Roux & al., Deep NMF for speech separation,, in IEEE Int. Conf. on Acous., Speech and Signal Proc. (ICASSP), 2015.
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Towards Hybrid deep learning
… some prior works in Audio

• Phase retrieval from the magnitude spectrogram

• The classic Griffin-Lim Algorithm (GLA)

• Exploits spectrogram consistency

(      should correspond to the complex spectrogram

of a time domain signal     )

• Implemented as an iterative algorithm

• are respectively the STFT and ISTFT operators

14
Y. Masuyama, K. Yatabe, Y. Koizumi, Y. Oikawa and N. Harada, "Deep Griffin Lim Iteration: Trainable Iterative Phase Reconstruction Using Neural Network," 
in IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 1, pp. 37-50, Jan. 2021,

Deep griffin-Lim
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Towards Hybrid deep learning approaches
Audio synthesis

• Coupling model-based and deep learning

• For example, using deep learning for learning the parameters of a 
signal processing model

J. Engel & al., “DDSP: Differentiable Digital Signal Processing,” in Int. Conf. on Learning Representations (ICLR), 2020. 16
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Towards Hybrid deep learning approaches
Audio synthesis

• The example of DDSP

• A multi-scale spectral loss

With

and with c = [2048, 1024, 512, 256, 128, 64] indicates the FFT 

size used to compute the STFT. 

J. Engel & al., “DDSP: Differentiable Digital Signal Processing,” in Int. Conf. on Learning Representations (ICLR), 2020. 17
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Exploiting “physical” principles in the loss 
in the context of DDSP   

● The issue: traditional reconstruction losses do not work very well when trying to 

estimate frequency parameters (e.g. fundamental frequency)

● Contribution: loss function that compares audio measuring frequency displacement 

of spectral frames

B. Torres, G. Peeters, G. Richard. Unsupervised Harmonic Parameter Estimation Using Differentiable DSP and Spectral Optimal Transport. IEEE 
International Conference on Acoustics, Speech and Signal Processing, Apr 2024, Seoul, South Korea. 
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Exploiting “physical” principles in the loss 
in the context of DDSP 

•Vertical (L_1, L_2) converge smoothly only when close to global min. 

•Horizontal SOT has good gradient orientation

•Motivating example: different reconstruction losses when tuning a sinusoid 

B. Torres, G. Peeters, G. Richard. Unsupervised Harmonic Parameter Estimation Using Differentiable DSP and Spectral Optimal Transport. IEEE 
International Conference on Acoustics, Speech and Signal Processing, Apr 2024, Seoul, South Korea. 
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Exploiting “physical” principles in the loss 
in the context of DDSP 

• Tested on synthetic data and compared with Multi-Scale Spectral loss

• Improvement on pitch estimation and audio reconstruction metrics

•Example use case: f0 and harmonic amplitudes estimation task

B. Torres, G. Peeters, G. Richard. Unsupervised Harmonic Parameter Estimation Using Differentiable DSP and Spectral Optimal Transport. IEEE 
International Conference on Acoustics, Speech and Signal Processing, Apr 2024, Seoul, South Korea. 
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Exploiting music/audio knowledge in sound generation 

• For example, a classic pipeline in recent Text-to-speech

• …the task of sound generation from (mel) spectrogram

21

Text

Log-mel specrogram Wav

Wavglow Hifi-Gan, Wavgrad

Log-mel specrogram Wav

Hifi-Gan, Wavgrad
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Exploiting music/audio knowledge in sound generation 
From Mel-Spectrogram to waveform

22
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Exploiting music/audio knowledge in sound generation 
From Mel-Spectrogram to waveform

• Example: wavgrad, specgrad conditioned on mel-spectrogram

Illustration of the diffusion process (50 iterations)

Sound examples

reference wavgrad

N. Chen & al.“WaveGrad: Estimating gradients for waveform generation,” in Proc. ICLR, 2021.

Koizumi, Yuma et al. “SpecGrad: Diffusion Probabilistic Model based Neural Vocoder with Adaptive Noise Spectral Shaping.” Interspeech (2022).
23
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Exploiting music/audio knowledge in sound generation 
From Mel-Spectrogram to waveform

• The example of priorgrad, specgrad, …  

Koizumi, Yuma et al. “SpecGrad: Diffusion Probabilistic Model based Neural Vocoder with Adaptive Noise Spectral Shaping.” Interspeech (2022).24
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Exploiting music/audio knowledge in sound generation 
From Mel-Spectrogram to waveform
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Exploiting music/audio knowledge in sound generation 
From Mel-Spectrogram to waveform

• The GLA-Grad approach

26 H. Liu, T. Baoueb, M. Fontaine, J. Le Roux, G. Richard. GLA-Grad: A Griffin-Lim Extended Waveform Generation Diffusion Model. IEEE International 
Conference on Acoustics, Speech and Signal Processing, Apr 2024, Seoul (Korea), South Korea. 
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Exploiting music/audio knowledge in sound generation 
From Mel-Spectrogram to waveform

• Results: 
• GLA-Grad: novel scheme for diffusion-based generation of speech from mel-spectrogram

• Stronger generalization performance to unseen speakers

• → Advantage of incorporating a phase retrieval module

• Slight decrease in generation speed, but lower cost compared to a longer reverse process

• → Good trade-off between quality and inference speed

H. Liu, T. Baoueb, M. Fontaine, J. Le Roux, G. Richard. GLA-Grad: A Griffin-Lim Extended Waveform Generation Diffusion Model. IEEE 
International Conference on Acoustics, Speech and Signal Processing, Apr 2024, Seoul (Korea), South Korea. 
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Exploiting music/audio knowledge in sound generation 
From Mel-Spectrogram to waveform

• GANS are difficult to train (GANs) 

• Diffusion models have a slow 
inference speed

SpecDiff-Gan:

Combines principles of

- Diffusion-gans, Hifi-Gan and specgrad

- …for speech and music

Spectrally shaped noise:

- to increase noise in low-energy regions, 
thereby challenging the discriminator.

T. Baoueb, H. Liu, M. Fontaine, J. Le Roux, G. Richard , SpecDiff-GAN: A Spectrally-Shaped Noise Diffusion GAN for Speech and Music Synthesis, ICASSP 2024 

Demo at: https://specdiff-gan.github.io/
28
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Exploiting music/audio knowledge in sound generation 
From Mel-Spectrogram to waveform

• SpecdiffGan:

• Merged elements from diffusion models with GANs via the forward 
diffusion process
→ Enhancing stability and quality
• Swift inference speed: ∼ 200 times faster than real-time
• Adaptability to various GAN-based audio synthesis models

29

Ground truth SpecDiff-Gan

speech

piano

drums

T. Baoueb, H. Liu, M. Fontaine, J. Le Roux, G. Richard , SpecDiff-GAN: A Spectrally-Shaped Noise Diffusion GAN for Speech and Music Synthesis, ICASSP 2024 

Demo at: https://specdiff-gan.github.io/
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Exploiting music knowledge in “Symbolic Music 

Generation”

• Symbolic music :

• Data-driven Symbolic Music Generation is difficult!

• Inconsistency in melody and rhythm

• Absence of multi-scale structures found in real music

• …

Add knowledge about musical structure to data-driven models

30

Music score MIDI representation (or piano roll)

Representation as sequence of tokens

M. Agarwal, C. Wang, G. Richard. Structure-informed Positional Encoding for Music Generation. IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), Apr 2024, Seoul, South Korea.
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Symbolic Music Generation

• For example with transformers :

• Attention: Invariance to temporal order of inputs

• Role of the PE: to provide the information about 
which element of the input sequence comes in 
which order.

Towards exploiting « musical structured informed » 
Position Encoding (PE)

31 M. Agarwal, C. Wang, G. Richard. Structure-informed Positional Encoding for Music Generation. IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), Apr 2024, Seoul, South Korea.
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Symbolic Music Generation
« musical structured informed » Position Encoding (PE)

• From No Positional Encoding

32

…to Absolute PE

…to structured APE

Results show that better music generation can be achieved by using knowledge 

about musical structure in data-driven Transformers through Positional Encoding

M. Agarwal, C. Wang, G. Richard. Structure-informed Positional Encoding for Music Generation. IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), Apr 2024, Seoul, South Korea.
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Exploiting speech production models for source 

separation

• An example for unsupervised singing voice separation

K Schulze-Forster, G. Richard, L. Kelley, C. Doire, R Badeau Unsupervised Music Source Separation Using Differentiable Parametric Source Models, IEEE Trans. On AASP, 2023

G. Richard, V. Lostanlen, Y.-H. Yang, M. Müller, “Model-based Deep Learning for Music Information Research”, IEEE Signal Processing Magazine - Special Issue on Model-based 

and Data-Driven Audio Signal Processing, 2024, accepted (preprint accessible at: https://arxiv.org/abs/2406.11540)
34
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Exploiting speech production models for source 

separation

Knowledge about « how the sound is produced « (e.g. sound production models)  

Singing voice as a source / filter model  :

• source = vibration of vocal folds

• Filter = resonances of vocal/nasal cavities

A new paradigm 

• Model is at the « core » of neural architecture

• Source separation by synthesis (no 
interference from other sources)

• Learning only from the polyphonic recording 
(no need of the true individual tracks)

Novel sound transformation capabilities:

• Timbre/melody of the voice, 

• Lyrics, translation

• Re-harmonization

35
K Schulze-Forster, G. Richard, L. Kelley, C. Doire, R Badeau Unsupervised Music Source Separation Using Differentiable Parametric Source Models, IEEE Trans. On AASP, 2023
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Unsupervised learning strategy
(e.g. no need of the individual source signals)

36 [1] H. Cuesta, B. McFee, and E. Gómez. Multiple f0 estimation in vocal ensembles using convolutional neural networks. ISMIR, 2020.
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Parametric source models

38
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Global architecture overview
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Some results

• Unsupervised (US) ≈  supervised (SU)

43

NMF1: S. Ewert and M. M¨uller, Using score-informed constraints for NMF- based source separation, in Proc. IEEE Int. Conf. on Acoustics, 
Speech and Signal Processing. IEEE, 2012, pp. 129 132.
NMF2: J.-L. Durrieu, B. David, and G. Richard, A musically motivated mid- evel representation for pitch estimation and musical audio source
separation, IEEE J. Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1180 1191, 2011.
UNET: D. Petermann, P. Chandna, H. Cuesta, J. Bonada, and E. Gomez, Deep learning based source separation applied to choir ensembles,
in Proc. Int. Soc. Music Inf. Retrieval Conf., 2020, pp. 733 739.
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Some results

• Unsupervised (US) ≈  supervised (SU)

• Almost no drop of performances when
using only 3% of the training data
(US-F vs. US-S and SV-F vs. SV-S)

44

NMF1: S. Ewert and M. M¨uller -informed constraints for NMF- based 
Speech and Signal Processing. IEEE, 2012, pp. 129 132.
NMF2: J.-L. Durrieu mid- evel representation for pitch estimation and musical audio source

6, pp. 1180 1191, 2011.
UNET: D. Petermann, P. Chandna, H. Cuesta, J. Bonada Deep learning 
in Proc. Int. Soc. Music Inf. Retrieval Conf., 2020, pp. 733 739.
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Some results

• Unsupervised (US) ≈  supervised (SU)

• Almost no drop of performances when
using only 3% of the training data
(US-F vs. US-S and SV-F vs. SV-S)

• ..much larger drop of performances of 
the supervised baseline model (Unet)

45

NMF1: S. Ewert and M. Mueller, Using score-informed constraints for NMF- based source separation, in Proc. IEEE Int. Conf. on Acoustics, 
Speech and Signal Processing. IEEE, 2012, pp. 129 132.
NMF2: J.-L. Durrieu, B. David, and G. Richard, A musically motivated mid- evel representation for pitch estimation and musical audio source
separation, IEEE J. Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1180 1191, 2011.
UNET: D. Petermann, P. Chandna, H. Cuesta, J. Bonada, and E. Gomez, Deep learning based source separation applied to choir ensembles,
in Proc. Int. Soc. Music Inf. Retrieval Conf., 2020, pp. 733 739.
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Towards a fully differentiable model for unsupervised 

singing voice separation

• Integration of multi-F0 extractor and automatic voice assignment

46 G. Richard, P. Chouteau, B. Torres A fully differentiable model for unsupervised singing voice separation, . IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), Apr 2024, Seoul, South Korea.
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Towards a fully differentiable model for unsupervised 

singing voice separation

• Extraction of F0 sequences from assigned salience maps.

47 G. Richard, P. Chouteau, B. Torres A fully differentiable model for unsupervised singing voice separation, . IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), Apr 2024, Seoul, South Korea.
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Towards a fully differentiable model for unsupervised 

singing voice separation

• End-to-end approach less accurate
than the baseline semi-integrated
approach

• Train data: Bach Chorales-Barbershop Quartet 
(BCBSQ)

• Test data: Choral Singing Dataset (CSD) 

• … but much more robust on out of 
domain data 

• Train data: Bach Chorales-Barbershop Quartet 
(BCBSQ) or BC1Song (e.G. reduced BCBSQ)

• Test data: Cantoria

48 G. Richard, P. Chouteau, B. Torres A fully differentiable model for unsupervised singing voice separation, . IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), Apr 2024, Seoul, South Korea.
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A short audio demo and some take aways

• A short demo at  

• https://schufo.github.io/umss/

• Ou local link

• And for the fully differentiable model at: 

• https://pierrechouteau.github.io/umss_icassp/audio

49

https://schufo.github.io/umss/
file:///D:/Documents/Thèses/2018-Kilian-Schulze-Forster/site-web-demo-unsupervised-source-separation/schufo.github.io/umss/index.htm
https://pierrechouteau.github.io/umss_icassp/audio
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To conclude

• The potential for hybrid deep learning …  

• Interpretability, Controllability, Explainability

• Hybrid model becomes controllable by human-understandable parameters

• New audio capabilities: perceptually meaningful sound transformation 

• Frugality: gain of several orders of magnitude in the need of data and model complexity

• Towards a more resource efficient and sustainable AI 
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