Tél. 01 75 31 96 60
Curriculum vitæ (pdf)Résumé (pdf)
Site web personnelPersonal Web Site
Équipe de recherche :Research Team:
Signal, Statistique et Apprentissage (S2A)Signal, Statistics and Learning (S2A)
Laboratoire :Laboratory:
Laboratoire Traitement et Communication de l'Information (LTCI)Information Processing and Communication Laboratory (LTCI)
Département :Department:
Image, Données, Signal (IDS)Image, Data, Signal (IDS)
Gaël Richard is Professor at Télécom Paris, Institut polytechnique de Paris and scientific co-director of Hi! PARIS. His research work lies at the core of digitization and is dedicated to the analysis, transformation, understanding and automatic indexing of acoustic signals (including speech, music, environmental sounds) and to a lesser extent of heterogeneous and multimodal signals. In particular, he developed several source separation methods for audio and musical signals based on machine learning approaches.
Gaël Richard has received in 2020 the Grand Prix IMT-Académie des Sciences — read his interview on I’mTech
He is also awarded in 2022 of an advanced ERC grant of the European Union on AI for sounds for the project HI-Audio —- Check the current open positions.
More information (Preprints, Publications, CV,….) on the Personal web site or on Google scholar
Research
My research interests are mainly in the field of machine learning and speech/audio signal processing and include topics such as:
-
- Signal representations and signal models : Subspace methods, sparse representation, atomic decomposition, Non NEgative MAtrix factorisation (NMF), Source Separation…
- Machine learning methods for audio/music signals : machine listening, Music Information Retrieval (MIR), Audio/Music indexing, Speech/audio segmentation, Speech/music emotion recognition.
- Models for multipitch estimation in polyphonic music signals, rythmn/beat estimation,musical instrument recognition
- Audio Coding and 3D Audio
- Multimedia and speech signal analysis, speech synthesis
Teaching
Main courses include:
Talks / Seminars
A selection of talks….:
-
- Keynote talk at the ICASSP 2024 Workshop on Explainable AI for Speech and Audio, « Explainable and interpretable deep audio processing based on hybrid deep learning« , April 15th, 2024, Seoul, Korea.
- Keynote talk at Winter School on Generative AI 2024, « Audio and cross-modal Generative AI, »Feb 27th-28th, 2024, EMINES conference Center, Morocco
- Keynote talk at SANE 2023, « Deep Hybrid Learning and Its Application to Unsupervised Singing Voice Separation, » Oct. 2023, New York, US
- Keynote talk at Dafx’2022: « Hybrid deep learning for audio« , Sept. 2022, Vienna, Austria.
- Talk at award ceremony National academy of sciences « Analysis, transformation and recognition of audio signals« , November 2020, Paris, France.
- Invited talk « Machine listening: AI for sounds and music« , Colloquium Colloque IMT – L’intelligence artificielle au coeur des mutations industrielles (slides in English), April 2019, Paris, France.
- Keynote talk at DCASE’2016, « Acoustic scene and events recognition:
how similar is it to speech recognition and music genre/instrument recognition ?, Sept. 2016, Budapest, Hungary.
- Keynote talk at IWAENC’2014, « Melody Extraction from Polyphonic Music Signals« , Sept. 2014, Nice, France
- Invited talk at AES 53rd Conference on Semantic Audio : »Informed Audio Source Separation« , Jan. 2014, London, UK
- Keynote talk at WIAMIS’2012, « Audio and Multimedia Music Signals Indexing, May 2012, Dublin, Ireland
Manvi Agarwal 2nd place in the 3-Minute Thesis® Competition
PhD — 06/06/2024She took part alongside five other doctoral students from Université Paris Saclay, Télécom Paris, and Université Clermont [...]Review: one year of research 2022
Faculty Members, Innovation — 13/06/2023The document depicts the great variety of scientific fields, research projects and applications generated by this abundant ecosystem.Rétrospective : un an de recherche
Faculty Members, Innovation — 13/06/2023L'ouvrage présente la grande diversité des domaines scientifiques du numérique, les travaux des 18 équipes de recherche et les [...]IA interprétable pour l'audio (Usine Nouvelle)
Data Science & AI, Faculty Members — 06/07/2022Professeur à Télécom Paris, Gaël Richard a décroché une bourse Advanced Grant de l'ERC pour son projet de [...]Audio et apprentissage machine : le projet de Gaël Richard récompensé
Data Science & AI, Faculty Members — 16/05/2022Chercheur en traitement de l’information à Télécom Paris, Gaël Richard a obtenu [...]AI for sound: an ERC grant for prof. Gaël Richard
Data Science & AI, Faculty Members — 26/04/2022Professor Gaël Richard, executive director of Hi! Paris and Professor at Télécom Paris, an IMT school, [...]Gaël Richard, IMT-Académie des Sciences Grand Prix
Faculty Members — 26/01/2021Voice synthesis, sound separation, automatic recognition of instruments or voices… His contributions to the academic [...]Gaël Richard, Grand Prix IMT-Académie des Sciences
Faculty Members — 24/11/2020Synthèse vocale, séparation des sons, reconnaissance automatique des instruments ou des voix… Ses apports au milieu [...]Maîtriser la consommation électrique des bâtiments
PhD, Innovation — 24/09/2020Simon Henriet vient de soutenir sa thèse de doctorat à Télécom Paris, intitulée «La désagrégation de consommations [...]Hi! Paris : Télécom Paris en pointe dans le centre de recherche en IA HEC/IP Paris
Data Science & AI — 18/09/2020La science des données et l'IA sont un domaine de prédilection de Télécom Paris. C'est [...]