Data Science Seminar
September 7, 2017
The seminar took place from 2PM to 4PM in Amphi Saphir, and featured two talks:
You can download the slides of this talk. Abstract: Big Data and the Internet of Things (IoT) have the potential to fundamentally shift the way we interact with our surroundings. The challenge of deriving insights from the Internet of Things (IoT) has been recognized as one of the most exciting and key opportunities for both academia and industry. Advanced analysis of big data streams from sensors and devices is bound to become a key area of data mining research as the number of applications requiring such processing increases. Dealing with the evolution over time of such data streams, i.e., with concepts that drift or change completely, is one of the core issues in stream mining. In this talk, I will present an overview of data stream mining, and I will introduce some popular open source tools for data stream mining.
You can download the slides of this talk. Abstract: We introduce locally stationary time series through the local approximation of the non-stationary covariance structure by a stationary one. This allows us to define autoregression coefficients in a non-stationary context, which, in the particular case of a locally stationary Time Varying Autoregressive (TVAR) process, coincide with the generating coefficients. We provide and study an estimator of the time varying autoregression coefficients in a general setting. The proposed estimator of these coefficients enjoys an optimal minimax convergence rate under limited smoothness conditions. In a second step, using a bias reduction technique, we derive a minimax-rate estimator for arbitrarily smooth time-evolving coefficients, which outperforms the previous one for large data sets. In turn, for TVAR processes, the predictor derived from the estimator exhibits an optimal minimax prediction rate.